886 resultados para Synthetic elastics
Resumo:
Rechargeable batteries based on Li and Na ions have been growing leaps and bounds since their inception in the 1970s. They enjoy significant attention from both the fundamental science point of view and practical applications ranging from portable electronics to hybrid vehicles and grid storage. The steady demand for building better batteries calls for discovery, optimisation and implementation of novel positive insertion (cathode) materials. In this quest, chemists have tried to unravel many future cathode materials by taking into consideration their eco-friendly synthesis, material/process economy, high energy density, safety, easy handling and sustainability. Interestingly, sulfate-based cathodes offer a good combination of sustainable syntheses and high energy density owing to their high-voltage operation, stemming from electronegative SO42- units. This review delivers a sneak peak at the recent advances in the discovery and development of sulfate-containing cathode materials by focusing on their synthesis, crystal structure and electrochemical performance. Several family of cathodes are independently discussed. They are 1) fluorosulfates AMSO(4)F], 2) bihydrated fluorosulfates AMSO(4)F2H(2)O], 3) hydroxysulfate AMSO(4)OH], 4) bisulfates A(2)M(SO4)(2)], 5) hydrated bisulfates A(2)M(SO4)(2)nH(2)O], 6) oxysulfates Fe-2(SO4)(2)O] and 7) polysulfates A(2)M(2)(SO4)(3)]. A comparative study of these sulfate-based cathodes has been provided to offer an outlook on the future development of high-voltage polyanionic cathode materials for next-generation batteries.
Resumo:
In this paper, we propose a super resolution (SR) method for synthetic images using FeatureMatch. Existing state-of-the-art super resolution methods are learning based methods, where a pair of low-resolution and high-resolution dictionary pair are trained, and this trained pair is used to replace patches in low-resolution image with appropriate matching patches from the high-resolution dictionary. In this paper, we show that by using Approximate Nearest Neighbour Fields (ANNF), and a common source image, we can by-pass the learning phase, and use a single image for dictionary. Thus, reducing the dictionary from a collection obtained from hundreds of training images, to a single image. We show that by modifying the latest developments in ANNF computation, to suit super resolution, we can perform much faster and more accurate SR than existing techniques. To establish this claim we will compare our algorithm against various state-of-the-art algorithms, and show that we are able to achieve better and faster reconstruction without any training phase.
Resumo:
Transition metal atom (Co) substituted synthetic tetrahedrite compounds Cu12-xCoxSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) were prepared by solid state synthesis. X-Ray Diffraction (XRD) patterns revealed tetrahedrite as the main phase, whereas for the compounds with x = 0, 0.5 a trace of impurity phase Cu3SbS4 was observed. The surface morphology showed a large grain size with low porosity, which indicated appropriate compaction for the hot pressed samples. The phase purity, as monitored by Electron Probe Micro Analysis (EPMA) is in good agreement with the XRD data. The elemental composition for all the compounds almost matched with the nominal composition. The X-ray Photoelectron Spectroscopy (XPS) data showed that Cu existed in both +1 and +2 states, while Sb exhibited +3 oxidation states. Elastic modulus and hardness showed a systematic variation with increasing Co content. The electrical resistivity and Seebeck coefficient increased with increase in the doping content due to the decrease in the number of carriers caused by the substitution of Co2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. A combined effect of resistivity and Seebeck coefficient leads to the maximum power factor of 1.76 mW m(-1) K-2 at 673 K for Cu11.5Co0.5Sb4S13. This could be due to the optimization in the carrier concentration by the partial substitution of Co2+ on both the Cu1+ as well as Cu2+ site at the same doping levels, which is also supported by the XPS data. The total thermal conductivity systematically decreased with increase of doping content as it is mainly influenced by the decrease of carrier thermal conductivity. The maximum thermoelectric figure of merit zT = 0.98 was obtained at 673 K for Cu11.5Co0.5Sb4S13. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Resumo:
The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.
Resumo:
A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.
Resumo:
The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.
Stabilisation/solidification of synthetic drill cuttings representing Ras Shukier oil field in Egypt
Resumo:
18 p.