955 resultados para Sustainable Cities
Resumo:
Urban metabolism considers a city as a system with flows of energy and material between it and the environment. Recent advances in bio-physical sciences provide methods and models to estimate local scale energy, water, carbon and pollutant fluxes. However, good communication is required to provide this new knowledge and its implications to endusers (such as urban planners, architects and engineers). The FP7 project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aimed to address this gap by illustrating the advantages of considering these issues in urban planning. The BRIDGE Decision Support System (DSS) aids the evaluation of the sustainability of urban planning interventions. The Multi Criteria Analysis approach adopted provides a method to cope with the complexity of urban metabolism. In consultation with targeted end-users, objectives were defined in relation to the interactions between the environmental elements (fluxes of energy, water, carbon and pollutants) and socioeconomic components (investment costs, housing, employment, etc.) of urban sustainability. The tool was tested in five case study cities: Helsinki, Athens, London, Florence and Gliwice; and sub-models were evaluated using flux data selected. This overview of the BRIDGE project covers the methods and tools used to measure and model the physical flows, the selected set of sustainability indicators, the methodological framework for evaluating urban planning alternatives and the resulting DSS prototype.
Resumo:
The Westminster Sustainable Business Forum (WSBF) has compiled a collection of expert essays on the topic of ‘sustainable construction’ contributed to by industry, policy-makers, and specialists from academia.
Resumo:
A study of the relationships between the amount of energy consumed for transportation purposes and a few selected variables related to urban form and socioeconomic characteristics of some of the largest Brazilian cities is conducted in this work. The studied cities include all 27 state capitals regardless of their size and population and 184 urban areas each with more than 20,000 inhabitants located in the state of São Paulo. Two different techniques were applied for data analyses: a more traditional regression analysis approach and artificial neural networks. In general, the results found in the analyses conducted here support the assumption that urban sprawl increases the energy use for transportation. In the case of the 27 state capitals, the analysis indicated that two spatial variables have a strong impact on the energy consumed for urban transportation: urban density and the ratio between the longest distances in the east-west and north-south directions. In the case of the 184 urbanized areas we also reached a similar conclusion. In that case, however, income and employment level apparently have a stronger influence on the amount of energy consumed. The results of the present study stress the importance of physical planning in developing country cities in order to reduce energy use for transportation. © 2007 International Energy Initiative, Inc.
Resumo:
Includes bibliography
Resumo:
The urbanization of modern societies has imposed to the planners and decision-makers a more precise attention to facts not considered before. Several aspects, such as the energy availability and the deleterious effect of pollution on the populations, must be considered in the policy decisions of cities urbanization. The current paradigm presents centralized power stations supplying a city, and a combination of technologies may compose the energy mix of a country, such as thermal power plants, hydroelectric plants, wind systems and solar-based systems, with their corresponding emission pattern. A goal programming multi-objective optimization model is presented for the electric expansion analysis of a tropical city, and also a case study for the city of Guaratinguetá, Brazil, considering a particular wind and solar radiation patterns established according to actual data and modeled via the time series analysis method. Scenarios are proposed and the results of single environmental objective, single economic objective and goal programming multi-objective modeling are discussed. The consequences of each dispatch decision, which considers pollutant emission exportation to the neighborhood or the need of supplementing electricity by purchasing it from the public electric power grid, are discussed. The results revealed energetic dispatch for the alternatives studied and the optimum environmental and economic solution was obtained. © 2012 Elsevier Ltd.
Resumo:
Includes bibliography
Resumo:
This guideline jointly published by The UN Economic and Social Commission for Asia and the Pacific (ESCAP), the UN Economic Commission for Latin America and the Caribbean (ECLAC), and the UN Human Settlements Programme (UN-HABITAT), in partnership with the Urban Design Lab of the Earth Institute, Columbia University, provides practical tools for city planners and decision makers to reform urban planning and infrastructure design according to the principles of eco-efficiency and social inclusiveness. It includes case studies from the Republic of Korea, the Philippines, Japan and Sri Lanka.
Resumo:
Cities are key locations where Sustainability needs to be addressed at all levels, as land is a finite resource. However, not all urban spaces are exploited at best, and land developers often evaluate unused, misused, or poorly-designed urban portions as impracticable constraints. Further, public authorities lose the challenge to enable and turn these urban spaces into valuable opportunities where Sustainable Urban Development may flourish. Arguing that these spatial elements are at the centre of SUD, the paper elaborates a prototype in the form of a conceptual strategic planning framework, committed to an effective recycling of the city spaces using a flexible and multidisciplinary approach. Firstly, the research focuses upon a broad review of Sustainability literature, highlighting established principles and guidelines, building a sound theoretical base for the new concept. Hence, it investigates origins, identifies and congruently suggests a definition, characterisation and classification for urban “R-Spaces”. Secondly, formal, informal and temporary fitting functions are analysed and inserted into a portfolio meant to enhance adaptability and enlarge the choices for the on-site interventions. Thirdly, the study outlines ideal quality requirements for a sustainable planning process. Then, findings are condensed in the proposal, which is articulated in the individuation of tools, actors, plans, processes and strategies. Afterwards, the prototype is tested upon case studies: Solar Community (Casalecchio di Reno, Bologna) and Hyllie Sustainable City Project, the latter developed via an international workshop (ACSI-Camp, Malmö, Sweden). Besides, the qualitative results suggest, inter alia, the need to right-size spatial interventions, separate structural and operative actors, involve synergies’ multipliers and intermediaries (e.g. entrepreneurial HUBs, innovation agencies, cluster organisations…), maintain stakeholders’ diversity and create a circular process open for new participants. Finally, the paper speculates upon a transfer of the Swedish case study to Italy, and then indicates desirable future researches to favour the prototype implementation.
Resumo:
Population growth is always increasing, and thus the concept of smart and cognitive cities is becoming more important. Developed countries are aware of and working towards needed changes in city management. However, emerging countries require the optimization of their own city management. This chapter illustrates, based on a use case, how a city in an emerging country can quickly progress using the concept of smart and cognitive cities. Nairobi, the capital of Kenya, is chosen for the test case. More than half of the population of Nairobi lives in slums with poor sanitation, and many slum inhabitants often share a single toilet, so the proper functioning and reliable maintenance of toilets are crucial. For this purpose, an approach for processing text messages based on cognitive computing (using soft computing methods) is introduced. Slum inhabitants can inform the responsible center via text messages in cases when toilets are not functioning properly. Through cognitive computer systems, the responsible center can fix the problem in a quick and efficient way by sending repair workers to the area. Focusing on the slum of Kibera, an easy-to-handle approach for slum inhabitants is presented, which can make the city more efficient, sustainable and resilient (i.e., cognitive).
Resumo:
The key of mobility in urban planning is not in dispute. Integrated strategies that take into account the interrelations among land use, transport supply and demand and the different transportation modes are more necessary than ever. In Europe, regulatory tools such as local mobility plans or traffic plans have been enforced for a long time, evolving into so-called sustainable urban transport plans (SUTP) ? that is, plans thatmerge urban planning,mobility governance, social awareness and environmental safeguards to develop a vision based on sustainability and equity. Indeed, SUTP are aimed at solving typical problems in current land use, such as urban sprawl, which make clear the need for a paradigm shift from transport (or mobility) planning to land use (or city) planning, thereby producing urban mobility plans that are fully aligned with integrated urban development plans. This paper describes how SUTP are articulated across Europe according to four case studies: Peterborough (UK), Chambe¿ry (France), Ferrara (Italy) and Pinto (Spain), to highlight variations and commonalities, both among the four national legal frameworks and the actual planning processes at the local level. Objectives, measures and indicators used in the monitoring and evaluation phases have been analysed and the results assessed. The main conclusion of the paper is that, as seen in these real-life examples, the lack of integration between spatial planning and transport strategies results in the unsustainability of urban areas and, therefore, in a significant loss of competitiveness.
Resumo:
Sustainable development in its three dimensions – economic, social and environmental – has become a major concern on an international scale. The problem is global, but must be solved locally. Most of the world’s population lives in cities that act as centres of economic growth and productivity, but which – if they develop in the wrong direction – can cause social inequalities, or irreversibly harm the environment. Urban transport causes a number of negative impacts that can affect sustainability targets. The objective of this study is to propose an analysis of sustainability of urban passenger transport systems based on available indicators in most cities. This will serve to benchmark the practices of different cities and manage their transport systems. This work involves the creation of composite indicators (CI) to measure the sustainability of urban passenger transport systems. The methodology is applied to 23 European cities. The indicators are based on a benchmarking approach, and the evaluation of each aspect in each case therefore depends on the performance of the whole sample. The CI enabled us to identify which characteristics have the greatest influence on the sustainability of a city’s transport system, and to establish transport policies that could potentially improve its shortcomings. Finally, the cities are clustered according to the values obtained from the CIs, and thus according to the weaknesses and strengths of their transport systems.
Resumo:
This paper introduces a road map for ICTs (Information and communication technologies) supporting planning, operation and management of energy systems in smart cities. The road map summarises different elements that form energy systems in cities and proposes research and technical development (RTD) and innovation activities for the development and innovation of ICTs for holistic design, planning and operation of energy systems. In addition, synergies with other ICT systems for smart cities are considered. There are four main target groups for the road map: 1) citizen; 2) building sector; 3) energy sector; and 4) municipality level. As an example for enabling active participation of citizens, the road map proposes how ICT can enable citizens? involvement among others into building design. The building sector roadmap proposes how ICTs can support the planning of buildings and renovations in the future, as well as how to manage building energy systems. The energy sector road map focuses on city?s energy systems and their planning and management, including e.g. demand side management, management of different district level energy systems, energy performance validation and management, energy data models, and smarter use of open energy data. Moreover, the municipality level road map proposes among others ICTs for better integration of city systems and city planning enabling maximised energy efficiency. In addition, one road map section suggests development needs related to open energy data, including among others the use of energy data and the development and harmonisation of energy data models. The road map has been assembled in the READY4SmartCities project (funded by EU 7th Framework Programme), which focuses on the energy system at the city level, consisting of centralised energy systems and connections to the national level energy grids, as well as interconnections to the neighbourhood and building level energy systems.
Resumo:
Urban mobility in Europe is always a responsibility of the municipalities which propose measures to reduce CO2 emissions in terms of mobility aimed at reducing individual private transport (car). The European Commission's Action Plan on Urban Mobility calls for an increase in the take-up of Sustainable Urban Mobility Plans in Europe. SUMPs aim to create a sustainable urban transport system. Europe has got some long term initiatives and has been using some evaluation procedures, many of them through European projects. Nevertheless, the weak point with the SUMPs in Spain, has been the lack of concern about the evaluation and the effectiveness of the measures implemented in a SUMP. For this reason, it is difficult to know exactly whether or not the SUMPs have positively influenced in the modal split of the cities, and its contribution to reduce CO2 levels. The case of the City of Burgos is a very illustrative example as it developed a CiViTAS project during the years 2005-2009, with a total investment of 6M?. The results have been considered as ?very successful? even at European level. The modal split has changed considerably for better, The cost-effectiveness ratio of the SUMP in the city can be measured with the CO2 ton saved, specifically 36 ? per CO2 ton saved, which is fully satisfactory and in line with calculations from other European researchers. Additionally, the authors propose a single formula to measure the effectiveness of the activities developed under the umbrella of a SUMP.
Resumo:
Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal.
Resumo:
There is growing urgency to enhance the sustainability of existing and emerging cities. The science of ecology, especially as it interacts with disciplines in the social sciences and urban design, has contributions to make to the sustainable transformation of urban systems. Not all possible urban transformations may lead toward sustainability. Ecological science helps identify components of resilience that can favor transformations that are more sustainable. To summarize the dynamics and choices involved in sustainable transformations, a “metacity” framework is presented, embracing ecological processes in cities as complementary to those involving society, power, and economy.