919 resultados para Suspensions (components)
Resumo:
The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.
Resumo:
Wavelength-division multiplexing (WDM) technology, by which multiple optical channels can be simultaneously transmitted at different wavelengths through a single optical fiber, is a useful means of making full use of the low-loss characteristics of optical fibers over a wide-wavelength region. The present day multifunction RADARs with multiple transmit receive modules requires various kinds of signal distribution for real time operation. If the signal distribution can be achieved through optical networks by using Wavelength Division Multiplexing (WDM) methods, it results in a distribution scheme with less hardware complexity and leads to the reduction in the weight of the antenna arrays In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment. This paper discusses about the analysis performed on various WDM components of distribution optical network for radar applications. The analysis is performed by considering the feasible constant gain regions of Erbium doped fiber amplifier (EDFA) in Matlab environment. This will help the user in the selection of suitable components for WDM based optical distribution networks.
Resumo:
A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.
Resumo:
P bodies are 100-300 nm sized organelles involved in mRNA silencing and degradation. A total of 60 human proteins have been reported to localize to P bodies. Several human SNPs contribute to complex diseases by altering the structure and function of the proteins. Also, SNPs alter various transcription factors binding, splicing and miRNA regulatory sites. Owing to the essential functions of P bodies in mRNA regulation, we explored computationally the functional significance of SNPs in 7 P body components such as XRN1, DCP2, EDC3, CPEB1, GEMIN5, STAU1 and TRIM71. Computational analyses of non-synonymous SNPs of these components was initiated using well utilized publicly available software programs such as the SIFT, followed by PolyPhen, PANTHER, MutPred, I-Mutant-2.0 and PhosSNP 1.0. Functional significance of noncoding SNPs in the regulatory regions were analysed using FastSNP. Utilizing miRSNP database, we explored the role of SNPs in the context that alters the miRNA binding sites in the above mentioned genes. Our in silico studies have identified various deleterious SNPs and this cataloguing is essential and gives first hand information for further analysis by in vitro and in vivo methods for a better understanding of maintenance, assembly and functional aspects of P bodies in both health and disease. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The paper discusses a wave propagation based method for identifying the damages in an aircraft built up structural component such as delamination and skin-stiffener debonding. First, a spectral finite element mode l (SFEM) is developed for modeling wave propagation in general built-up structures by using the concept of assembling 2D spectral plate elements. The developed numerical model is validated using conventional 2-D FEM. Studies are performed to capture the mode coupling,that is, the flexural-axial coupling present in the wave responses. Lastly, the damages in these built up structures are then identified using the developed SFEM model and the measured responses using the concept Damage Force Indicator (DFI) technique.
Resumo:
Microstereolithography (MSL) is a rapid prototyping technique to fabricate complex three-dimensional (3D) structure in the microdomain involving different materials such as polymers and ceramics. The present effort is to fabricate microdimensional ceramics by the MSL system from a non-aqueous colloidal slurry of alumina. This slurry predominantly consists of two phases i.e. sub-micrometer solid alumina particles and non-aqueous reactive difunctional and trifunctional acrylates with inert diluent. The first part of the work involves the study of the stability and viscosity of the slurry using different concentrations of trioctyl phosphine oxide (TOPO) as a dispersant. Based on the optimization, the highest achievable solid loadings of alumina has been determined for this particular colloidal suspension. The second part of the study highlights the fabrication of several micro-dimensional alumina structures by the MSL system. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Growth kinetics, phase boundary compositions, interdiffusion coefficients and the relative mobilities of the components are determined in the W-Pt system. The measured phase boundary compositions for the gamma phase are found to be different from the reported phase diagram. The interdiffusion coefficient and the activation energy decrease in the Pt(W) solid solution with increasing W content. An estimation of the parabolic growth constants and average interdiffusion coefficients in the gamma phase indicates that the diffusion process should be explained based on the estimation of diffusion parameters, which otherwise could lead to a wrong conclusion. The estimation of the relative mobilities of the components in the gamma phase indicates that Pt has a much higher diffusion rate than W. This is explained with the help of the crystal structure and the possible point defects present on different sublattices.
Resumo:
Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-A -vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.
Resumo:
Cells of Bacillus subtilis exhibited higher affinity towards hematite than to kaolinite. Bacterial cells were grown and adapted in the presence of hematite and kaolinite. Higher amounts of mineral-specific proteinaceous compounds were secreted in the presence of kaolinite while hematite-grown cells produced higher amounts of exopolysaccharides. Extracellular proteins (EP) exhibited higher adsorption density on kaolinite which was rendered more hydrophobic. Hematite surfaces were rendered more hydrophilic due to increased adsorption of extracellular polysaccharides (ECP). Significant surface chemical changes were produced due to interaction between minerals and extracellular proteins and polysaccharides. Iron oxides such as hematite could be effectively removed from kaolinite clays using selective bioflocculation of hematite after interaction with EP and ECP extracted from mineral-grown cells. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Early diagnosis of disease is important, because therapeutic intervention is most successful before it spread to the subject. The best health screenings method could be the blood test because the blood contains thousands of bio-molecules coming as by-products from the diseased part of the organism and would be non-invasive approach. The major limitation of this approach is the very low concentrations of the analytes need to be detected. Raman spectroscopy has been proven as one of the cutting edge technique applied in the field of histology, cytology and clinical chemistry. The primary obstacle of Raman spectroscopy is the low signal intensities. One of the promising approaches to overcome that is surface enhanced Raman spectroscopy (SERS) which has opened novel opportunities for chemical and biomedical analytics. Albumin is one of the most abundant proteins in blood, produced by liver. The state of albumin in serum determines the health of the liver and kidney. Serum albumin helps to transport many small molecules such as fatty acids, bilirubin, calcium, drugs through the blood. In this study, SERS is being used for the quantification and to understand of binding mechanism serum albumin.
Resumo:
Based on an interdiffusion study using an incremental diffusion couple in the V-Ga binary system, we have shown that V diffuses via the lattice, whereas Ga does so via grain boundaries, for the growth of the V3Ga phase. We estimate the contributions from the two different mechanisms, which are usually difficult to delineate in an interdiffusion study. Available tracer diffusion studies and the atomic arrangement in the crystal structure have been considered for a discussion on the diffusion mechanisms.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
One of the greatest challenges in contemporary condensed matter physics is to ascertain whether the formation of glasses from liquids is fundamentally thermodynamic or dynamic in origin. Although the thermodynamic paradigm has dominated theoretical research for decades, the purely kinetic perspective of the dynamical facilitation (DF) theory has attained prominence in recent times. In particular, recent experiments and simulations have highlighted the importance of facilitation using simple model systems composed of spherical particles. However, an overwhelming majority of liquids possess anisotropy in particle shape and interactions, and it is therefore imperative to examine facilitation in complex glass formers. Here, we apply the DF theory to systems with orientational degrees of freedom as well as anisotropic attractive interactions. By analyzing data from experiments on colloidal ellipsoids, we show that facilitation plays a pivotal role in translational as well as orientational relaxation. Furthermore, we demonstrate that the introduction of attractive interactions leads to spatial decoupling of translational and rotational facilitation, which subsequently results in the decoupling of dynamical heterogeneities. Most strikingly, the DF theory can predict the existence of reentrant glass transitions based on the statistics of localized dynamical events, called excitations, whose duration is substantially smaller than the structural relaxation time. Our findings pave the way for systematically testing the DF approach in complex glass formers and also establish the significance of facilitation in governing structural relaxation in supercooled liquids.
Resumo:
Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.
Resumo:
Optical emission from emitters strongly interacting among themselves and also with other polarizable matter in close proximity has been approximated by emission from independent emitters. This is primarily due to our inability to evaluate the self-energy matrices and radiative properties of the collective eigenstates of emitters in heterogeneous ensembles. A method to evaluate self-energy matrices that is not limited by the geometry and material composition is presented to understand and exploit such collective excitations. Numerical evaluations using this method are used to highlight the significant differences between independent and the collective modes of emission in nanoscale heterostructures. A set of N Lorentz emitters and other polarizable entities is used to represent the coupled system of a generalized geometry in a volume integral approach. Closed form relations between the Green tensors of entity pairs in free space and their correspondents in a heterostructure are derived concisely. This is made possible for general geometries because the global matrices consisting of all free-space Green dyads are subject to conservation laws. The self-energy matrix can then be assembled using the evaluated Green tensors of the heterostructure, but a decomposition of its components into their radiative and nonradiative decay contributions is nontrivial. The relations to compute the observables of the eigenstates (such as quantum efficiency, power/energy of emission, radiative and nonradiative decay rates) are presented. A note on extension of this method to collective excitations, which also includes strong interactions with a surface in the near-field, is added. (C) 2014 Optical Society of America