960 resultados para Suspended Solids
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work evaluated the natural and anthropogenic influences on the quality of groundwater from public supply wells in the urban area of Marília, São Paulo State. Sixteen sampling points were established in the Adamantina Aquifer, Bauru Aquifer System, analyzing the following parameters: electrical conductivity, temperature, pH, total suspended solids, HCO3 - , PO4 3-, SO4 2-, Cl- , F- , N-NO3 - , Ca2+, Na+ , K+ , Mg2+, Si4+, Fe3+ and Al3+. The results indicated that the groundwater in the urban area of Marília has a slightly acid pH and low conductivity, with the ionic composition presenting a low cation and anion concentration and is classified as soft water and calciumbicarbonated water. Natural sources of elements/compounds can be attributed to the dissolution of carbonates during the water/rock interaction, controlling pH, alkalinity and electrical conductivity, and hydrolysis of other mineral constituents of sedimentary rocks from Adamantina Formation, with the exception of quartz. High concentrations of N-NO3 - found in some public supply wells in urban Marilia were due to sewage.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The contribution of wastewater from a tannery industry to the pollution of a stream was investigated. The main parameters studied were biochemical oxygen demand, chemical oxygen demand, chromium, dissolved oxygen, fecal and total conforms, nitrogen, oils and greases, pH, phosphorous, sulfides, suspended solids, turbidity, and volatile solids. Three sampling points were located: (I) at the discharge point of tannery wastewater, (2) 50 m upstream, and (3) 80 m downstream of discharge point. Also was investigated the pollution at the stream source.
Resumo:
The present study aimed to evaluate the interactions of the pesticide Vertimec (R) 18EC in aquatic ecosystems. In this respect, soil plots were contaminated with Vertimec (R) 18EC at the concentration indicated for strawberry crops (0.125 L of solution m(-2)). After the contamination, torrential rainfall was simulated and the surface runoff was collected and transferred to mesocosm tanks in five treatments, run in triplicate: (1) control-C; (2) runoff from an uncontaminated plot-UR; (3) runoff from the plot contaminated with Vertimec (R) 18EC-CR; (4) direct application of Vertimec (R) 18EC in the water-V and (5) water samples gathered randomly to verify whether there was contamination between the mesocosms-RS. Water samples from these tanks were also submitted to ecotoxicological tests with Daphnia similis and analyses to evaluate the limnological characteristics, in five collection periods over 10 days (240 h). Physical and chemical differences were observed in the water samples, mainly related to increased turbidity, suspended solids and nutrients (nitrogen and phosphate forms). Acute toxicity was observed for the direct application treatment for the entire experimental period, and in some periods for the CR treatment (from 48 h to 168 h). The results obtained suggest that the pesticide did not fully degrade during the study period (10 days) in the direct application treatment, demonstrating that the presence of other substances in the commercial formulation contribute to the maintenance of toxicity. This represents a potential risk for aquatic ecosystems in areas adjacent to where the chemical is applied. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.
Resumo:
The spectral reflectance of the sea surface recorded using ocean colour satellite sensors has been used to estimate chlorophyll-a concentrations for decades. However, in bio-optically complex coastal waters, these estimates are compromised by the presence of several other coloured components besides chlorophyll, especially in regions affected by low-salinity waters. The present work aims to (a) describe the influence of the freshwater plume from the La Plata River on the variability of in situ remote sensing reflectance and (b) evaluate the performance of operational ocean colour chlorophyll algorithms applied to Southwestern Atlantic waters, which receive a remarkable seasonal contribution from La Plata River discharges. Data from three oceanographic cruises are used, in addition to a historical regional bio-optical dataset. Deviations found between measured and estimated concentrations of chlorophyll-a are examined in relation to surface water salinity and turbidity gradients to investigate the source of errors in satellite estimates of pigment concentrations. We observed significant seasonal variability in surface reflectance properties that are strongly driven by La Plata River plume dynamics and arise from the presence of high levels of inorganic suspended solids and coloured dissolved materials. As expected, existing operational algorithms overestimate the concentration of chlorophyll-a, especially in waters of low salinity (S<33.5) and high turbidity (Rrs(670)>0.0012 sr−1). Additionally, an updated version of the regional algorithm is presented, which clearly improves the chlorophyll estimation in those types of coastal environment. In general, the techniques presented here allow us to directly distinguish the bio-optical types of waters to be considered in algorithm studies by the ocean colour community.
Resumo:
[ES]Se ha hecho uso de un sustrato orgánico (triturado de palmera) en humedales artificiales para comprobar su idoneidad para el tratamiento de las aguas residuales, tanto en flujo vertical como horizontal y mixto, teniendo en cuenta la eficiencia de eliminación de los parámetros recogidos en la normativa y la posible obturación. Con este sustrato se consiguieron eliminaciones de entre el 80 y el 90% de materia orgánica, más del 98% de eliminación de sólidos en suspensión y turbidez y en torno al 99.9% de eliminación de coliformes fecales
Resumo:
Il modello afflussi-deflussi e di erosione Kineros2, fisicamente basato, distribuito e a scala di evento, è stato applicato a due bacini idrografici montani della provincia di Bologna (Italia) al fine di testare e valutare il suo funzionamento in ambiente appenninico. Dopo la parametrizzazione dei due bacini, Kineros2 è stato calibrato e validato utilizzando dati sperimentali di portata e di concentrazione dei solidi sospesi, collezionati alla chiusura dei bacini grazie alla presenza di due stazioni di monitoraggio idrotorbidimetrico. La modellazione ha consentito di valutare la capacità del modello di riprodurre correttamente le dinamiche idrologiche osservate, nonchè di trarre conclusioni sulle sue potenzialità e limitazioni.
Resumo:
The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.
Resumo:
The hydraulic fracturing of the Marcellus Formation creates a byproduct known as frac water. Five frac water samples were collected in Bradford County, PA. Inorganic chemical analysis, field parameters analysis, alkalinity titrations, total dissolved solids(TDS), total suspended solids (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were conducted on each sample to characterize frac water. A database of frac water chemistry results from across the state of Pennsylvania from multiple sources was compiled in order to provide the public and research communitywith an accurate characterization of frac water. Four geochemical models were created to model the reactions between frac water and the Marcellus Formation, Purcell Limestone, and the oil field brines presumed present in the formations. The average concentrations of chloride and TDS in the five frac water samples were 1.1 �± 0.5 x 105 mg/L (5.5X average seawater) and 140,000 mg/L (4X average seawater). BOD values for frac water immediately upon flow back were over 10X greater than the BOD of typical wastewater, but decreased into the range of typical wastewater after a short period of time. The COD of frac water decreases dramatically with an increase in elapsed time from flow back, but remain considerably higher than typicalwastewater. Different alkalinity calculation methods produced a range of alkalinity values for frac water: this result is most likely due to high concentrations of aliphatic acid anions present in the samples. Laboratory analyses indicate that the frac watercomposition is quite variable depending on the companies from which the water was collected, the geology of the local area, and number of fracturing jobs in which the frac water was used, but will require more treatment than typical wastewater regardless of theprecise composition of each sample. The geochemical models created suggest that the presence of organic complexes in an oil field brine and Marcellus Formation aid in the dissolution of ions such as bariumand strontium into the solution. Although equilibration reactions between the Marcellus Formation and the slickwater account for some of the final frac water composition, the predominant control of frac water composition appears to be the ratio of the mixture between the oil field brine and slickwater. The high concentration of barium in the frac water is likely due to the abundance of barite nodules in the Purcell Limestone, and the lack of sulfate in the frac water samples is due to the reducing, anoxic conditions in the earth's subsurface that allow for the degassing of H2S(g).
Resumo:
Human development causes degradation of stream ecosystems due to impacts on channel morphology, hydrology, and water quality. Urbanization, the second leading cause of stream impairment, increases the amount of impervious surface cover, thus reducing infiltration and increasing surface runoff of precipitation, which ultimately affects stream hydrologic process and aquatic biodiversity. The main objective of this study was to assess the overall health of Miller Run, a small tributary of the Bull Run and Susquehanna River watersheds, through an integrative hydrologic and water quality approach in order to determine the degree of Bucknell University’s impact on the stream. Hydrologic conditions, including stage and discharge, and water quality conditions, including total suspended solids, ion, nutrient, and dissolved metal concentrations, specific conductivity, pH, and temperature, were measured and evaluated at two sampling sites (upstream and downstream of Bucknell’s main campus) during various rain events from September 2007 to March 2008. The primary focus of the stream analysis was based on one main rain event on 26 February 2008. The results provided evidence that Miller Run is impacted by Bucknell’s campus. From a hydrologic perspective, the stream’s hydrograph showed the exact opposite pattern of what would be expected from a ‘normal’ stream. Miller run had a flashier downstream hydrograph and a broader upstream hydrograph, which was more than likely due to the increased amount of impervious surface cover throughout the downstream half of the watershed. From a water quality perspective, sediment loads increased at a faster rate and were significantly higher downstream compared to upstream. These elevated sediment concentrations were probably the combined result of sediment runoff from upstream and downstream construction sites that were being developed over the course of the study. Sodium, chloride, and potassium concentrations, in addition to specific conductivity, also significantly increased downstream of Bucknell’s campus due to the runoff of road salts. Calcium and magnesium concentrations did not appear to be impacted by urbanization, although they did demonstrate a significant dilution effect downstream. The downstream site was not directly affected by elevated nitrate concentrations; however, soluble reactive phosphorus concentrations tended to increase downstream and ammonium concentrations significantly peaked partway through the rain event downstream. These patterns suggest that Miller Run may be impacted by nutrient runoff from the golf course, athletic fields, and/or fertilizers applications on the main campus. Dissolved manganese and iron concentrations also appeared to slightly increase downstream, demonstrating the affect of urban runoff from roads and parking lots. pH and temperature both decreased farther downstream, but neither showed a significant impact of urbanization. More studies are necessary to determine how Miller Run responds to changes in season, climate, precipitation intensity, and land-use. This study represents the base-line analysis of Miller Run’s current hydrologic and water quality conditions; based on these initial findings, Bucknell should strongly consider modifications to improve storm water management practices and to reduce the campus’s overall impact on the stream in order to enhance and preserve the integrity of its natural water resources.
Resumo:
In recent years, growing attention has been devoted to the use of lignocellulosic biomass as a feedstock to produce renewable carbohydrates as a source of energy products, including liquid alternatives to fossil fuels. The benefits of developing woody biomass to ethanol technology are to increase the long-term national energy security, reduce fossil energy consumption, lower greenhouse gas emissions, use renewable rather than depletable resources, and create local jobs. Currently, research is driven by the need to reduce the cost of biomass-ethanol production. One of the preferred methods is to thermochemically pretreat the biomass material and subsequently, enzymatically hydrolyze the pretreated material to fermentable sugars that can then be converted to ethanol using specialized microorganisms. The goals of pretreatment are to remove the hemicellulose fraction from other biomass components, reduce bioconversion time, enhance enzymatic conversion of the cellulose fraction, and, hopefully, obtain a higher ethanol yield. The primary goal of this research is to obtain kinetic detailed data for dilute acid hydrolysis for several timber species from the Upper Peninsula of Michigan and switchgrass. These results will be used to identify optimum reaction conditions to maximize production of fermentable sugars and minimize production of non-fermentable byproducts. The structural carbohydrate analysis of the biomass species used in this project was performed using the procedure proposed by National Renewable Energy Laboratory (NREL). Subsequently, dilute acid-catalyzed hydrolysis of biomass, including aspen, basswood, balsam, red maple, and switchgrass, was studied at various temperatures, acid concentrations, and particle sizes in a 1-L well-mixed batch reactor (Parr Instruments, ii Model 4571). 25 g of biomass and 500 mL of diluted acid solution were added into a 1-L glass liner, and then put into the reactor. During the experiment, 5 mL samples were taken starting at 100°C at 3 min intervals until reaching the targeted temperature (160, 175, or 190°C), followed by 4 samples after achieving the desired temperature. The collected samples were then cooled in an ice bath immediately to stop the reaction. The cooled samples were filtered using 0.2 μm MILLIPORE membrane filter to remove suspended solids. The filtered samples were then analyzed using High Performance Liquid Chromatography (HPLC) with a Bio-Rad Aminex HPX-87P column, and refractive index detection to measure monomeric and polymeric sugars plus degradation byproducts. A first order reaction model was assumed and the kinetic parameters such as activation energy and pre-exponential factor from Arrhenius equation were obtained from a match between the model and experimental data. The reaction temperature increases linearly after 40 minutes during experiments. Xylose and other sugars were formed from hemicellulose hydrolysis over this heat up period until a maximum concentration was reached at the time near when the targeted temperature was reached. However, negligible amount of xylose byproducts and small concentrations of other soluble sugars, such as mannose, arabinose, and galactose were detected during this initial heat up period. Very little cellulose hydrolysis yielding glucose was observed during the initial heat up period. On the other hand, later in the reaction during the constant temperature period xylose was degraded to furfural. Glucose production from cellulose was increased during this constant temperature period at later time points in the reaction. The kinetic coefficient governing the generation of xylose from hemicellulose and the generation of furfural from xylose presented a coherent dependence on both temperature and acid concentration. However, no effect was observed in the particle size. There were three types of biomass used in this project; hardwood (aspen, basswood, and red maple), softwood (balsam), and a herbaceous crop (switchgrass). The activation energies and the pre-exponential factors of the timber species and switchgrass were in a range of 49 - 180 kJ/mol and from 7.5x104 - 2.6x1020 min-1, respectively, for the xylose formation model. In addition, for xylose degradation, the activation energies and the preexponential factors ranged from 130 - 170 kJ/mol and from 6.8x1013 - 3.7x1017 min-1, respectively. The results compare favorably with the literature values given by Ranganathan et al, 1985. Overall, up to 92 % of the xylose was able to generate from the dilute acid hydrolysis in this project.