903 resultados para Surface plasmon resonance
Resumo:
The propagation of surface plasmon polaritons (SPP's) is studied using a photon scanning tunneling microscope (PSTM) and conventional attenuated total reflection (ATR). The PSTM experiment uses localized (focused beam) launching or SPP's at a wavelength of 632.8 nm. Propagation of the SPP is observed as an exponentially decaying tail beyond the launch site acid the 1/e propagation length is measured directly for a series of Ag films of different thicknesses. The ATR measurements are used to characterize the thin film optical and thickness parameters, revealing, notably, the presence of a contaminating adlayer of Ag2S of typical dielectric function, 8.7 + i2.7, and thickness 1-2 nm. Values of the SPP propagation length, based on the ATR- derived film parameters used in the four-media implicit SPP dispersion relation, show very good agreement with those based on the PSTM images for the case of undercoupled or optimally coupled SPP modes. The observed propagation lengths are quantitatively analyzed taking explicit account of additional intrinsic damping due to the growth of the Ag2S layer and of reradiation of the SPP back into the prism outside the launch site. Finally, the PSTM images show excellent SPP beam confinement in the original propagation direction.
Resumo:
Surface plasmon polaritons (SPPs) are excited with light of wavelength lambda (1) = 632.8 nm on or near a gentle Ag/Ag step structure using focused beam, prism coupling and detected using a bare, sharpened fibre tip. The tip-sample separation is controlled by means of an evanescent optical field at wavelength lambda (2) = 543.5 nm in a photon scanning tunnelling microscope (PSTM). The SPP propagation properties are first characterised on both the thin and thick sections of the Ag film structure either side of the step, both macroscopically, using attenuated total reflection, and microscopically from the PSTM images; the two techniques yield very good agreement. It is found that the SPP propagation length is similar to 10-11 mum across the step in each direction (thick to thin and vice versa) as observed in the PSTM images. Thus, with reference to the propagation lengths of 14.2 and 11.7 mum for the thick and thin planar parts of the Ag film respectively, it is concluded that the SPPs negotiate the step reasonably successfully. Importantly, also, it is shown that images may be produced, displaying SPPs with either an artificially enhanced (similar to 15-20 mum) or truncated (5-8 mum) propagation length across the step. Consideration of such images leads us to suggest the possibility that the photon tunnelling occurs in a local water environment. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Nonlinear optical transmission through periodically nanostructured metal films (surface-plasmon polaritonic crystals) has been studied. The surface polaritonic crystals have been coated with a nonlinear polymer. The optical transmission of such nanostructures has been shown to depend on the control-light illumination conditions. The resonant transmission exhibits bistable behavior with the control-light intensity. The bistability is different at different resonant signal wavelengths and for different wavelengths of the control light. The effect is explained by the strong sensitivity of the surface-plasmon mode resonances at the signal wavelength to the surrounding dielectric environment and the electromagnetic field enhancement due to plasmonic excitations at the controlled light wavelengths.
Resumo:
Spectral dispersion of light on a finite-size surface plasmon polaritonic (SPP) crystal has been studied. The angular wavelength separation of one or more orders of magnitude higher than in other state-of-the-art wavelength-splitting devices available to date has been demonstrated. The two-stage process is responsible for the dispersion value, which involves conversion of the incident light into SPP Bloch modes of a nanostructure followed by the SPP Bloch waves refraction at the SPP crystal boundary. The high spectral dispersion achievable in plasmonic devices may be useful for integrated high-resolution spectroscopy in nanophotonic, optical communication and lab-on-a-chip applications.
Resumo:
A new far-field optical microscopy capable of reaching nanometer-scale resolution is developed using the in-plane image magnification by surface plasmon polaritons. This approach is based on the optical properties of a metal-dielectric interface that may provide extremely large values of the effective refractive index neff up to 103 as seen by surface polaritons, and thus the diffraction limited resolution can reach nanometer-scale values of lambda/2neff. The experimental realization of the microscope has demonstrated the optical resolution better than 60 nm at 515 nm illumination wavelength.
Resumo:
We provide the quantum-mechanical description of the excitation of surface plasmon polaritons on metal surfaces by single photons. An attenuated-reflection setup is described for the quantum excitation process in which we find remarkably efficient photon-to-surface plasmon wave-packet transfer. Using a fully quantized treatment of the fields, we introduce the Hamiltonian for their interaction and study the quantum statistics during transfer with and without losses in the metal.
Resumo:
The overall quantum efficiency in surface plasmon (SP) enhanced Schottky barrier photodetectors is examined by considering both the external and internal yield. The external yield is considered through calculations of absorption and transmission of light in a configuration that allows reflectance minimization due to SP excitation. Following a Monte Carlo method, a procedure is presented to estimate the internal yield while taking into account the effect of elastic and inelastic scattering processes on excited carriers subsequent to photon absorption. The relative importance of internal photoemission and band-to-band contributions to the internal yield is highlighted along with the variation of the yield as a function of wavelength, metal thickness and other salient parameters of the detector. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The enhanced optical properties of metal films periodically perforated with an array of sub-wavelength size holes have recently been widely studied in the field of surface plasmon optics. The ability to design the optical transmission of such nanostructures, which act as plasmonic crystals, by varying their geometrical parameters gives them great flexibility for numerous applications in photonics, opto-electronics, and sensing. Transforming these passive optical elements into devices that may be actively controlled has presented a new challenge. Here, we report on the realization of an electrically controlled nanostructured optical system based on the unique properties of surface plasmon polaritonic crystals in contact with a liquid crystal (LC) layer. We discuss the effect of LC layer modulation on the surface plasmon dispersion, the related optical transmission and the underlying mechanism. The reported effect may be used to achieve active spectral tuneability and switching in a wide range of applications.
Resumo:
Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]
Resumo:
Iron-5,10,15,20-tetraphenylporphyrin (FeTPP) has been incorporated into films of a coordinating hydrogel polymer support medium, poly(gamma-ethyl-L-glutamate) (PEG) functionalised with imidazole pendant arms (PEG-Im), and studied in situ on silver electrodes using a combination of both resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectroscopy. The SERR spectra give information on the portion of the film close to the electrode surface while RR spectra probe the
Resumo:
Prothrombin interacts with phosphatidylserine containing platelet membranes via its N-terminal, gamma-carboxyglutamate (gla) residue-rich domain. Once bound it is cleaved to form the active protease, thrombin (factor IIa). Human prothrombin was cleaved with cathepsin G in the absence of calcium and magnesium ions. Under these conditions, the gla domain was removed. Phospholipid protected the protein from this proteolytic event, and this suggests that a conformational change may be induced by interaction with phospholipids. Binding of prothrombin to a surface containing 20% phosphatidylserine/80% phosphatidylcholine was detected by surface plasmon resonance, whereas no interaction with gla-domainless prothrombin was observed. Binding of intact prothrombin in the presence of calcium ions showed complex association kinetics, suggesting multiple modes of initial interaction with the surface. The kinetics of the dissociation phase could be fitted to a two-phase, exponential decay. This implies that there are at least two forms of the protein on the surface one of which dissociates tenfold more slowly than the other. Taken together, these data suggest that, on binding to a membrane surface, prothrombin undergoes a conformational change to a form which binds more tightly to the membrane.
Resumo:
The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured and modeled. Single-mode guiding and strong lateral mode confinement of dielectric-loaded SPP waveguide modes have been characterized with the near-field measurements and compared to the effective-index method model.
Resumo:
F1F0-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here, we show for the first time the presence of the F1-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using Surface Plasmon Resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin, G-gly), as a new ligand for the F1-ATPase. By molecular modeling, we identified the motif in the peptide sequence (EE/DxY), which directly interacts with the F1-ATPase and the amino-acids in the F1-ATPase which bind this motif. Replacement of the E9 residue by an alanine in the EE/DxY motif resulted in a strong decrease of G-gly binding to the F1-ATPase and the loss of its biological activity. In addition we demonstrated that F1-ATPase mediates the growth effects of the peptide. Indeed, blocking ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F1-ATPase which is induced by G-gly. These results suggest an important contribution of cell surface ATPase in the pro-proliferative action of this gastrointestinal peptide.
Resumo:
We report the direct imaging of surface plasmon propagation on thin silver films using the photon scanning tunneling microscope. It is found that the surface plasmon remains tightly confined in the original launch direction with insignificant scattering to other momentum states. A propagation length of 13.2 mum is measured at lambda = 632.8 nm. We also present images showing the interaction of a surface plasmon with the edge of the metal film supporting it. The most remarkable feature is the absence of a specularly reflected beam.