951 resultados para Supersymmetry and Duality
Resumo:
We construct and study classical solutions in Chern-Simons supergravity based on the superalgebra sl(N vertical bar N = 1). The algebra for the N = 3 case is written down explicitly using the fact that it arises as the global part of the super conformal W-3 superalgebra. For this case we construct new classical solutions and study their supersymmetry. Using the algebra we write down the Killing spinor equations and explicitly construct the Killing spinor for conical defects and black holes in this theory. We show that for the general sl(N|N - 1) theory the condition for the periodicity of the Killing spinor can be written in terms of the products of the odd roots of the super algebra and the eigenvalues of the holonomy matrix of the background. Thus the supersymmetry of a given background can be stated in terms of gauge invariant and well defined physical observables of the Chern-Simons theory. We then show that for N >= 4, the sl(N|N - 1) theory admits smooth supersymmetric conical defects.
Resumo:
We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.
Resumo:
The analytic signal (AS) was proposed by Gabor as a complex signal corresponding to a given real signal. The AS has a one-sided spectrum and gives rise to meaningful spectral averages. The Hilbert transform (HT) is a key component in Gabor's AS construction. We generalize the construction methodology by employing the fractional Hilbert transform (FrHT), without going through the standard fractional Fourier transform (FrFT) route. We discuss some properties of the fractional Hilbert operator and show how decomposition of the operator in terms of the identity and the standard Hilbert operators enables the construction of a family of analytic signals. We show that these analytic signals also satisfy Bedrosian-type properties and that their time-frequency localization properties are unaltered. We also propose a generalized-phase AS (GPAS) using a generalized-phase Hilbert transform (GPHT). We show that the GPHT shares many properties of the FrHT, in particular, selective highlighting of singularities, and a connection with Lie groups. We also investigate the duality between analyticity and causality concepts to arrive at a representation of causal signals in terms of the FrHT and GPHT. On the application front, we develop a secure multi-key single-sideband (SSB) modulation scheme and analyze its performance in noise and sensitivity to security key perturbations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Resumo:
In this paper, based on the AdS(4)/CFT3 duality, we have explored the precise connection between the abelian Chern-Simons (CS) Higgs model in (2 + 1) dimensions to that with its dual gravitational counterpart living in one higher dimension. It has been observed that theU(1) current computed at the boundary of the AdS(4) could be expressed as the local function of the vortex solution that has the remarkable structural similarity to that with the Ginzburg-Landau (GL) type local expression for the current associated with the Maxwell-CS type vortices in (2 + 1) dimensions. In order to explore this duality a bit further we have also computed the coherence length as well as the magnetic penetration depth associated with these vortices. Finally using the knowledge of both the coherence length as well as the magnetic penetration depth we have computed the Ginzburg-Landau coefficient for the Maxwell-CS type vortices in (2 + 1) dimensions.
Resumo:
We present an analysis of the rate of sign changes in the discrete Fourier spectrum of a sequence. The sign changes of either the real or imaginary parts of the spectrum are considered, and the rate of sign changes is termed as the spectral zero-crossing rate (SZCR). We show that SZCR carries information pertaining to the locations of transients within the temporal observation window. We show duality with temporal zero-crossing rate analysis by expressing the spectrum of a signal as a sum of sinusoids with random phases. This extension leads to spectral-domain iterative filtering approaches to stabilize the spectral zero-crossing rate and to improve upon the location estimates. The localization properties are compared with group-delay-based localization metrics in a stylized signal setting well-known in speech processing literature. We show applications to epoch estimation in voiced speech signals using the SZCR on the integrated linear prediction residue. The performance of the SZCR-based epoch localization technique is competitive with the state-of-the-art epoch estimation techniques that are based on average pitch period.
Resumo:
Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (μm – mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation. Experiments demonstrate that the hollow kagome nanolattices in uniaxial tension always fail at the same load when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. For notches with (a/w) > 1/3, the samples fail at lower peak loads and this is attributed to the increased compliance as fewer unit cells span the un-notched region. Finite element simulations of the kagome tension samples show that the failure is governed by tensile loading for (a/w) < 1/3 but as (a/w) increases, bending begins to play a significant role in the failure. This work explores the flaw sensitivity of hollow alumina kagome nanolattices in tension, using experiments and simulations, and demonstrates that the discrete-continuum duality of architected structural meta-materials gives rise to their flaw insensitivity even when made entirely of intrinsically brittle materials.
Resumo:
[EN]This research had as primary objective to model different types of problems using linear programming and apply different methods so as to find an adequate solution to them. To achieve this objective, a linear programming problem and its dual were studied and compared. For that, linear programming techniques were provided and an introduction of the duality theory was given, analyzing the dual problem and the duality theorems. Then, a general economic interpretation was given and different optimal dual variables like shadow prices were studied through the next practical case: An aesthetic surgery hospital wanted to organize its monthly waiting list of four types of surgeries to maximize its daily income. To solve this practical case, we modelled the linear programming problem following the relationships between the primal problem and its dual. Additionally, we solved the dual problem graphically, and then we found the optimal solution of the practical case posed through its dual, following the different theorems of the duality theory. Moreover, how Complementary Slackness can help to solve linear programming problems was studied. To facilitate the solution Solver application of Excel and Win QSB programme were used.
Resumo:
A duality transformation principle was proposed for converting a positive order homogeneous vectorfield into a negative order homogeneous vectorfield. The principle also converted a uniformly locally asymptotically stable differential equation into a uniformly bounded differential equation. The duality transformations included the geometric framework for homogeneity and the removal of origin from the state space.
Resumo:
In order to present and understand the nature of modern terrorism it is important to realize its key properties as well the mechanisms that shape terrorism. Selected properties and mechanisms shaping modern terrorism which can be exemplified by the following: evolutionary nature of terrorism, asymmetry of terrorism, interferentiality of terrorism, multitude of components of terrorism, diffusion of terrorism, duality of terrorism, positive dimension of terrorism, terrorist as the system, diversity of terrorist activity goals, changeability of terrorist threat, the broad and narrow dimension of terrorism, counter-anti-terrorism, the confrontational and cooperational character of relations, calculation and operational strategy, disintegrational nature of terrorism, multidisciplinarity of terrorism, horizontal and vertical dimension of terrorism and a the few other traits or mechanisms.
Resumo:
Instrumental music education is provided as an extra-curricular activity on a fee-paying basis by a small number of Education and Training Boards, formerly Vocational Education Committees (ETB/VECs) through specialist instrumental Music Services. Although all citizens’ taxes fund the public music provision, participation in instrumental music during school-going years is predominantly accessed by middle class families. A series of semistructured interviews sought to access the perceptions and beliefs of instrumental music education practitioners (N=14) in seven publicly-funded music services in Ireland. Canonical dispositions were interrogated and emergent themes were coded and analysed in a process of Grounded theory. The study draws on Foucault’s conception of discourse as a lens with which to map professional practices, and utilises Bourdieu’s analysis of the reproduction of social advantage to examine cultural assumptions, which may serve to privilege middle-class cultural choice to the exclusion of other social groups. Study findings show that within the Music Services, aesthetic and pedagogic discourses of the 19th century Conservatory system exert a hegemonic influence over policy and practice. An enduring ‘examination culture’ located within the Western art music tradition determines pedagogy, musical genre, and assessment procedures. Ideologies of musical taste and value reinforce the more tangible boundaries of fee-payment and restricted availability as barriers to access. Practitioners are aware of a status duality whereby instrumental teachers working as visiting specialists in primary schools experience a conflict between specialist and generalist educational aims. Nevertheless, study participants consistently advocated siting the point of access to instrumental music education in the primary schools as the most equitable means of access to instrumental music education. This study addresses a ‘knowledge gap’ in the sociology of music education in Ireland. It provides a framework for rethinking instrumental music education as equitable in-school musical participation. The conclusions of the study suggest starting-points for further educational research and may provide key ‘prompts’ for curriculum planning.
Resumo:
Duality is investigated for higher spin (s ≥ 2), free, massless, bosonic gauge fields. We show how the dual formulations can be derived from a common "parent", first-order action. This goes beyond most of the previous treatments where higher-spin duality was investigated at the level of the equations of motion only. In D = 4 spacetime dimensions, the dual theories turn out to be described by the same Pauli-Fierz (s = 2) or Fronsdal (s ≥ 3) action (as it is the case for spin 1). In the particular s = 2 D = 5 case, the Pauli-Fierz action and the Curtright action are shown to be related through duality. A crucial ingredient of the analysis is given by the first-order, gauge-like, reformulation of higher spin theories due to Vasiliev. © SISSA/ISAS 2003.
Resumo:
In this paper we discuss the relationship and characterization of stochastic comparability, duality, and Feller–Reuter–Riley transition functions which are closely linked with each other for continuous time Markov chains. A necessary and sufficient condition for two Feller minimal transition functions to be stochastically comparable is given in terms of their density q-matrices only. Moreover, a necessary and sufficient condition under which a transition function is a dual for some stochastically monotone q-function is given in terms of, again, its density q-matrix. Finally, for a class of q-matrices, the necessary and sufficient condition for a transition function to be a Feller–Reuter–Riley transition function is also given.
Resumo:
The key problems in discussing duality and monotonicity for continuous-time Markov chains are to find conditions for existence and uniqueness and then to construct corresponding processes in terms of infinitesimal characteristics, i.e., q-matrices. Such problems are solved in this paper under the assumption that the given q-matrix is conservative. Some general properties of stochastically monotone Q-process ( Q is not necessarily conservative) are also discussed.
Resumo:
The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET) products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain), and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.