979 resultados para Summer monsson
Resumo:
The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.
Resumo:
In the Sargasso Sea, maximum dimethylsulfide (DMS) accumulation occurs in summer, concomitant with the minimum of chlorophyll and 2 months later than its precursor, dimethylsulfoniopropionate (DMSP). This phenomenon is often referred to as the DMS "summer paradox". It has been previously suggested that the main agent triggering this pattern is increasing irradiance leading to light stress-induced DMS release from phytoplankton cells. We have developed a new model describing DMS(P) dynamics in the water column and used it to investigate how and to what extent processes other than light induced DMS exudation from phytoplankton, may contribute to the DMS summer paradox. To do this, we have conceptually divided the DMS "summer paradox" into two components: (1) the temporal decoupling between chlorophyll and DMSP and (2) the temporal decoupling between DMSP and DMS. Our results suggest that it is possible to explain the above cited patterns by means of two different dynamics, respectively: (1) a succession of phytoplankton types in the surface water and (2) the bacterially mediated DMSP(d) to DMS conversion, seasonally varying as a function of nutrient limitation. This work differs from previous modelling studies in that the presented model suggests that phytoplankton light-stress induced processes may only partially explain the summer paradox, not being able to explain the decoupling between DMSP and DMS, which is possibly the more challenging aspect of this phenomenon. Our study, therefore, provides an "alternative" explanation to the summer paradox further underlining the major role that bacteria potentially play in DMS production and fate.
Resumo:
We investigated a 100 × 100 km high-salinity region of the North Atlantic subtropical gyre during the Sub-Tropical Atlantic Surface Salinity Experiment/Salinity Processes in the Upper-ocean Regional Study (STRASSE/SPURS) cruise from August 21, 2012, to September 9, 2012. Results showed great variability in sea surface salinity (SSS; over 0.3 psu) in the mesoscale, over 7 cm of total evaporation, and little diapycnal mixing below 36 m depth, the deepest mixed layers encountered. Strong currents in the southwestern part of the domain, and the penetration of freshwater, suggest that advection contributed greatly to salinity evolution. However, it was further observed that a smaller cyclonic structure tucked between the high SSS band and the strongest currents contributed to the transport of high SSS water along a narrow front. Cross-frontal transport by mixing is also a possible cause of summertime reduction of SSS. The observed structure was also responsible for significant southward salt transport over more than 200 km.
Resumo:
During the summer of 2012, 20 surface drifters drogued at 50 m depth were deployed on the continental slope to the north of the Bay of Biscay. Initially after release the drifters all crossed the slope, with 14 continuing equatorward, parallel to the slope following an absolute dynamic topography feature and 6 returning to the slope, in an eddy, visible in chlorophyll-a maps. Lagrangian statistics show an anisotropic flow field that becomes less tied to the absolute dynamic topography and increasingly dominated by diffusion and eddy processes. A weaker tie to the absolute dynamic topography allowed for total of 8 of the drifters crossed from the deep water onto the shelf, showing pathways for flow across the slope. A combination of drifter trajectories, absolute dynamic topography and chlorophyll-a concentration maps have been used to show that small anticyclonic eddies, tied to the complex slope topography provide a mechanism for on shelf transport. During the summer, the presence of these eddies can be seen in surface chlorophyll-a maps.