966 resultados para Sugarcane Saccharum
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, Sao Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with N-15 (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha(-1) N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha(-1) of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
Thiamethoxam is a systemic insecticide from the neonicotinoid group, nitroguanidin family which affects the nicotinic receptor acetyl choline in the insect membrane, wounding the nervous system and causing the death of the insect. It was used with success in the control of initial pests of several crops. It was considered that thiamethoxam has a bioactivator effect, because in the absence of insects promoted increase in vigor, development and productivity of crops. This work was carried out to verify if thiamethoxam causes histological changes in sugarcane roots. In this work, it was used optical microscopy, images arrest, tissue biometrics and statistical analysis, in young roots of sugarcane RB 83 5486 after the treatments with different thiamethoxam concentrations. It was determined changes in histological structure of tissues 7, 14, 21 and 28 days after the treatments, establishing its effects on root plant anatomy. It was verified that thiamethoxam increased root cortex width, increasing the vascular cylinder and the metaxylem vessel elements number in the vascular tissue until 21 days after application.
Resumo:
Transposable elements (TEs) account for a large portion of plant genomes, particularly in grasses, in which they correspond to 50%-80% of the genomic content. TEs have recently been shown to be a source of new genes and new regulatory networks. The most striking contribution of TEs is referred as "molecular domestication", by which the element coding sequence loses its movement capacity and acquires cellular function. Recently, domesticated transposases known as mustang and derived from the Mutator element have been described in sugarcane. In order to improve our understanding of the function of these proteins, we identified mustang genes from Sorghum bicolor and Zea mays and performed a phenetic analysis to assess the diversity and evolutionary history of this gene family. This analysis identified orthologous groups and showed that mustang genes are highly conserved in grass genomes. We also explored the transcriptional activity of sugarcane mustang genes in heterologous and homologous systems. These genes were found to be ubiquitously transcribed, with shoot apical meristem having the highest expression levels, and were downregulated by phytohormones. Together, these findings suggest the possible involvement of mustang proteins in the maintenance of hormonal homeostasis.
Resumo:
The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.
Resumo:
Abstract Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, São Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with 15N (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha-1 N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha-1 of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
The objective of this study was to evaluate the chemical composition, fermentation patterns and aerobic stability of sugarcane silages with addition of amino acid production (monosodium glutamate) by-product (APB) and microbial inoculants. Mature sugarcane was chopped and ensiled in laboratory silos (n = 4/treatment) without additives (control) and with APB (10 g/kg), Pioneer 1174® (PIO, 1.0 mg/kg, Lactobacillus plantarum + Streptoccoccus faecium, Pioneer), Lalsil Cana (2.0 mg/kg, Lactobacillus buchineri, Lallemand) or Mercosil Maís 11C33® (1.0 mg/kg, Lactobacillus buchineri + Lactobacillus plantarum + Streptoccoccus faecium, Timac Agro). Fresh silage and silage liquor samples were obtained to assess pH, chemical composition and organic acid concentrations. Silage temperature was recorded throughout seven days to evaluate aerobic stability. The addition of APB decreased lactic acid levels, increased pH and N-NH3 and did not alter ethanol, acetic and butyric acids concentrations or dry matter (DM) losses. Microbial inoculants enhanced acetic acid levels, although only Pioneer 1174® and Mercosil Maís 11C33® lowered ethanol, butyric acid and DM losses. The addition of APB increased CP content and did not modify DM, soluble carbohydrates contents or in vitro dry matter digestibility. Additives did not alter silage maximum temperature or temperature increasing rate; however, Pioneer 1174® and Mercosil Maís 11C33® increased the time elapsed to reach maximum temperature. Monosodium glutamate production by-product does not alter fermentation patterns or aerobic stability of sugarcane silages, whereas homofermentative bacteria can provide silages of good quality.
Resumo:
The experiment was conducted to evaluate the bromatological characteristics and the in vitro digestibility of four sugarcane varieties, subjected or not to hydrolysis, with quicklime. A completely randomized design was employed with three replications arranged in a 4 × 2 factorial scheme, with four sugarcane varieties (SP 52454, RB 867515, RB 855536 and IAC 862480), hydrolyzed or not. There was significant effect on brix (p < 0.05) and industrial fiber (p < 0.05), and IAC 862480 variety had the lowest levels of industrial fiber. There were no significant difference (p > 0.05) in neutral detergent fiber, acid detergent fiber and lignin levels among the sugarcane varieties under analysis and for the sugarcanes, hydrolyzed or not. The use of sugarcane hydrolysis with 1% quicklime improves the in vitro digestibility of NDF and ADF, regardless of the variety studied. Hydrolysis with 1% quicklime did not alter the sugarcane chemical composition.
Resumo:
Literature cited: p. 19-21.
Resumo:
Two important factors influencing sugar yield, the primary focus of sugarcane plant breeding programs, are stalk number and suckering. Molecular markers linked to both of these traits are sought to assist in the identification of high sugar yield, high stalk number, low-suckering sugarcane clones. In this preliminary mapping study, 108 progeny from a biparental cross involving two elite Australian sugarcane clones were evaluated at two sites for two years for both stalk number and suckering. A total of 258 DNA markers, including both restriction fragment length polymorphisms (RFLPs) and radio-labelled amplified fragments (RAFs), were scored and evaluated using single-factor analysis. Sixteen (7 RFLPs and 9 RAFs) and 14 (6 RFLPs and 8 RAFs) markers were identified that were significantly associated (P < 0.01) with stalk number and suckering, respectively, across both years and sites. The seven and six RFLP markers associated with stalk number and suckering, respectively, were generated by eight different RFLP probes, of which seven had been mapped in sorghum and (or) sugarcane. Of significant interest was the observation that all seven RFLP probes could be shown to be located within or near QTLs associated with tillering and rhizomatousness in sorghum. This observation highlights the usefulness of comparative mapping between sorghum and sugarcane and suggests that the identification of useful markers for stalk number and suckering in sugarcane would be facilitated by focussing on sorghum QTLs associated with related traits.
Resumo:
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.
Resumo:
As resistance genes have been shown to contain conserved motifs and cluster in many plant genomes, the identification of resistance gene analogues can be used as a strategy for both the discovery of DNA markers linked to disease resistance loci and the map-based cloning of disease resistance genes. Sugarcane suffers from many important diseases and an analysis of resistance gene analogues offers a means to identify DNA markers linked to resistance loci. However, sugarcane has the most complex genome of any crop plant and initially it is important to understand the extent of resistance gene analogue diversity in the sugarcane genome before genetic analysis. We review herein how more than 100 expressed sequence tags with homology to different resistance genes have been identified in sugarcane with many mapped as single-dose restriction fragment length polymorphism markers. Importantly, some of these resistance gene analogues have been shown to be linked to disease resistance genes or disease quantitative trait loci. In an attempt to more efficiently analyse additional resistance gene analogues in sugarcane, we report on experiments aimed at investigating the molecular diversity of several resistance gene analogue families using a modified form of a technique termed Ecotilling. Using Ecotilling, we were able to rapidly detect single nucleotide polymorphisms in fragments amplified by PCR from four different resistance gene analogue families, SoRP1D, SoPTO, SoXa21 and SoHs1pro-1. An analysis of a diverse set of sugarcane varieties, including modern sugarcane cultivars and several S. officinarum and S. spontaneum clones, indicated that all amplicons, apart from SoHs1pro-1, contained significant polymorphism within the gene region studied. However, a comparison among these sugarcane clones, including between the parents of two sugarcane mapping populations, indicated that most polymorphisms were multi-dose, not single-dose, preventing their genetic map location or association with disease susceptibility or resistance from being determined.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
Little is known about the extent of allelic diversity of genes in the complex polyploid, sugarcane. Using sucrose phosphate synthase (SPS) Gene (SPS) Family III as an example, we have amplified and sequenced a 400 nt region from this gene from two sugarcane lines that are parents of a mapping population. Ten single nucleotide polymorphisms (SNPs) were identified within the 400 nt region of which seven were present in both lines. In the elite commercial cultivar Q165(A), 10 sequence haplotypes were identified, with four haplotypes recovered at 9% or greater frequency. Based on SNP presence, two clusters of haplotypes were observed. In IJ76-514, a Saccharum officinarum accession, 8 haplotypes were identified with 4 haplotypes recovered at 13% or greater frequency. Again, two clusters of haplotypes were observed. The results suggest that there may be two SPS Gene Family III genes per genome in sugarcane, each with different numbers of different alleles. This suggestion is supported by sequencing results in an elite parental sorghum line, 403463-2-1, in which 4 haplotypes, corresponding to two broad types, were also identified. Primers were designed to the sugarcane SNPs and screened over bulked DNA from high and low Sucrose-containing progeny from a cross between Q165(A) and IJ76-514. The SNP frequency did not vary in the two bulked DNA samples, suggesting that these SNPs from this SPS gene family are not associated with variation in sucrose content. Using an ecotilling approach, two of the SPS Gene Family III haplotypes were mapped to two different linkage groups in homology group 1 in Q165(A). Both haplotypes mapped near QTLs for increased sucrose content but were not themselves associated with any sugar-related trait.
Resumo:
Seven species of eriophyoid mites (Acari: Eriophyoidea) are known to attack sugarcane plants (Saccharum spp., Poaceae) and related grasses in various parts of the world, but except for unconfirmed reports of Aceria sacchari and Abacarus sacchari, Australia had been thought to be free of these pests. Herein, Abacarus queenslandiensis n. sp. (Eriophyidae), vagrant on leaf surfaces of sugarcane in Australia, is described. Also, Cathetacarus n. gen. is erected for the distinctive mite, Catarhinus spontaneae Mohanasundaram, 1984. In addition, a key to the eriophyoid mites known to occur on sugarcane plants in the world is given.