172 resultados para Subsoil


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-third of the terrestrial C is stored in soils, and more than 50% of soil organic C (SOC) is stored in subsoils from 30 – 100 cm. Hence, subsoil is important as a source or sink for CO2 in the global carbon cycle. Especially the stable organic carbon (OC) is stored in subsoil, as several studies have shown that subsoil OC is of a higher average age than topsoil OC. However, there is still a lack of knowledge regarding the mechanisms of C sequestration and C turnover in subsoil. Three main factors are discussed, which possibly reduce carbon turnover rates in subsoil: Resource limitation, changes in the microbial community, and changes in gas conditions. The experiments conducted in this study, which aimed to elucidate the importance of the mentioned factors, focused on two neighbouring arable sites, with depth profiles differing in SOC stocks: One Colluvic Cambisol (Cam) with high SOC contents (8-12 g kg-1) throughout the profile and one Haplic Luvisol (Luv) with low SOC contents (3-4 g kg-1) below 30 cm depth. The first experiment was designed to gain more knowledge regarding the microbial community and its influence on carbon sequestration in subsoil. Soil samples were taken at four different depths on the two sites. Microbial biomass C (MBC) was determined to identify depth gradients in relation to the natural C availability. Bacterial and fungal residues as well as ergosterol were determined to quantify changes in the in the microbial community composition. Multi-substrate-induced-respiration (MSIR) was used to identify shifts in functional diversity of the microbial community. The MSIR revealed that substrate use in subsoil differed significantly from that in topsoil and also differed highly between the two subsoils, indicating a strong influence of resource limitations on microbial substrate use. Amino sugar analysis and the ratio of ergosterol to microbial biomass C showed that fungal dominance decreased with depth. The results clearly demonstrated that microbial parameters changed with depth according to substrate availability. The second experiment was an incubation experiment using subsoil gas conditions with and without the addition of C4 plant residues. Soil samples were taken from topsoil and subsoil of the two sites. SOC losses during the incubation, were not influenced by the subsoil gas conditions. Plant-derived C losses were generally stronger in the Cam (7.5 mg g-1), especially at subsoil gas conditions, than in the Luv (7.0 mg g-1). Subsoil gas conditions had no general effects on microbial measures with and without plant residue addition. However, the contribution of plant-derived MBC to total MBC was significantly reduced at subsoil gas conditions. This lead to the conclusion that subsoil gas conditions alter the metabolism of microorganisms but not the degradation of added plant residues is general. The third experiment was a field experiment carried out for two years. Mesh bags containing original soil material and maize root residues (C4 plant) were buried at three different depths at the two sites. The recovery of the soilbags took place 12, 18, and 24 months after burial. We determined the effects of these treatments on SOC, density fractions, and MBC. The mean residence time for maize-derived C was similar at all depths and both sites (403 d). MBC increased to a similar extent (2.5 fold) from the initial value to maximum value. This increase relied largely on the added maize root residues. However, there were clear differences visible in terms of the substrate use efficiency, which decreased with depth and was lower in the Luv than in the Cam. Hence freshly added plant material is highly accessible to microorganisms in subsoil and therefore equally degraded at both sites and depths, but its metabolic use was determined by the legacy of soil properties. These findings provide strong evidence that resource availability from autochthonous SOM as well as from added plant residues have a strong influence on the microbial community and its use of different substrates. However, under all of the applied conditions there was no evidence that complex substrates, i.e. plant residues, were less degraded in subsoil than in topsoil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A espécie Spondias tuberosa Arr. Cam. (umbuzeiro) destaca-se como uma das espécies arbóreas de maior potencial do semiárido brasileiro. Apesar de sua relevante importância socioeconômica e ambiental, há falta de estudos voltados para o estabelecimento de um modelo de produção de mudas da espécie. O objetivo desse trabalho foi avaliar a produção de mudas de Spondias tuberosa utilizando diferentes substratos e tamanho de recipientes. O experimento foi conduzido no viveiro do Laboratório de Ecologia Vegetal (LEV) do Centro de Ciências Agrárias (CCA) da Universidade Federal da Paraíba (UFPB), Areia - PB. O delineamento experimental usado foi em blocos casualizados em esquema fatorial 2 x 7 e parcelas subdivididas, sendo que os recipientes representaram as parcelas e os substratos as subparcelas. Foram utilizados substratos formulados a partir da mistura de terra de subsolo (37,5-100%), areia lavada (12,5- 25%) e esterco bovino curtido (10-50%). Os recipientes utilizados foram sacos de polietileno preto com volumes de 1900 cm3 (15 x 27 cm) e 5000 cm3 (25 x 26 cm). Para a obtenção das plântulas, sementes de Spondias tuberosa foram semeadas em sementeira de alvenaria até a repicagem (90 dias após o semeio). Aos 78 dias, após a repicagem, as mudas foram avaliadas quanto à altura, diâmetro do colo, relação altura/ diâmetro do colo, diâmetro do xilopódio, comprimento de raiz, massa seca da parte aérea e raiz. Os dados obtidos foram submetidos à análise de variância e ao teste F, sendo as médias comparadas pelo teste de Tukey ao nível de 5% de probabilidade, utilizando o software SISVAR®. Os substratos com esterco bovino curtido proporcionaram os maiores valores em altura e comprimento de raiz. Para a produção de mudas de Spondias tuberosa, é recomendado o substrato contendo terra de subsolo (45%) + Areia (15%) + Esterco bovino (40%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using N-15 pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67 degrees N) to steppe (54 degrees N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintenance of transport infrastructure assets is widely advocated as the key in minimizing current and future costs of the transportation network. While effective maintenance decisions are often a result of engineering skills and practical knowledge, efficient decisions must also account for the net result over an asset's life-cycle. One essential aspect in the long term perspective of transport infrastructure maintenance is to proactively estimate maintenance needs. In dealing with immediate maintenance actions, support tools that can prioritize potential maintenance candidates are important to obtain an efficient maintenance strategy. This dissertation consists of five individual research papers presenting a microdata analysis approach to transport infrastructure maintenance. Microdata analysis is a multidisciplinary field in which large quantities of data is collected, analyzed, and interpreted to improve decision-making. Increased access to transport infrastructure data enables a deeper understanding of causal effects and a possibility to make predictions of future outcomes. The microdata analysis approach covers the complete process from data collection to actual decisions and is therefore well suited for the task of improving efficiency in transport infrastructure maintenance. Statistical modeling was the selected analysis method in this dissertation and provided solutions to the different problems presented in each of the five papers. In Paper I, a time-to-event model was used to estimate remaining road pavement lifetimes in Sweden. In Paper II, an extension of the model in Paper I assessed the impact of latent variables on road lifetimes; displaying the sections in a road network that are weaker due to e.g. subsoil conditions or undetected heavy traffic. The study in Paper III incorporated a probabilistic parametric distribution as a representation of road lifetimes into an equation for the marginal cost of road wear. Differentiated road wear marginal costs for heavy and light vehicles are an important information basis for decisions regarding vehicle miles traveled (VMT) taxation policies. In Paper IV, a distribution based clustering method was used to distinguish between road segments that are deteriorating and road segments that have a stationary road condition. Within railway networks, temporary speed restrictions are often imposed because of maintenance and must be addressed in order to keep punctuality. The study in Paper V evaluated the empirical effect on running time of speed restrictions on a Norwegian railway line using a generalized linear mixed model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il lavoro è volto all’approfondimento, anche in chiave comparatistica, della vigente normativa riguardante la tutela e la valorizzazione dei beni archeologici. Nell’ambito della disciplina predisposta nell’ordinamento italiano si sono prese le mosse dal regime delle scoperte e dei ritrovamenti, per passare successivamente all’approfondimento della tutela approntata nella legislazione nazionale anche con riferimento alle limitazioni alla libera disponibilità e circolazione. Una particolare attenzione è stata dedicata alla tutela del territorio in cui i beni archeologici sono inseriti e quindi alla tutela indiretta, ai vincoli ope legis e alla pianificazione paesaggistica, mentre una specifica trattazione ha riguardato il regime dell’archeologia preventiva e la valorizzazione e fruizione di aree e parchi archeologici nel reciproco interfacciarsi delle legislazioni regionali e delle linee guida emanate con il d.m. MiBAC 18 aprile 2012. Un’indagine articolata ha avuto per oggetto la tutela del patrimonio archeologico subacqueo e in particolare la Convenzione dell’UNESCO adottata a Parigi nel 2001, nonché la tutela sovranazionale dei beni culturali, con riferimento alla disciplina dell’Unione europea e a quella della Convenzione europea per la protezione del patrimonio archeologico del 16 gennaio 1992 e della Convenzione UNIDROIT del 24 giugno 1995 sui beni culturali rubati o esportati illegalmente. Hanno infine fatto seguito due specifiche indagini sulla tutela del patrimonio archeologico in Spagna e in Francia. Quanto alla prima si è esaminato l’attuale quadro costituzionale in cui si inserisce la tutela del patrimonio culturale con particolare attenzione alle disposizioni della Ley 16/1985 del 25 giugno 1985 e alla legislazione delle Comunidades autónomas. Per quanto riguarda la seconda una particolare attenzione è stata dedicata alla Legge 27 settembre 1941 che ha introdotto in Francia la prima disciplina organica relativa agli scavi e ai ritrovamenti archeologici. Nel quadro normativo vigente un’analisi particolareggiata è stata dedicata al Code du Patrimoine, il cui quinto libro è interamente dedicato all’archeologia.