996 resultados para Subduction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New U-Th-Ra, major and trace element, and Sr-Nd-Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc-continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc-continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated Pb-208/Pb-204. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. U-238 and Ra-226 excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fonualei Spreading Center affords an excellent opportunity to evaluate geochemical changes with increasing depth to the slab in the Lau back-arc basin. We present H2O and CO2 concentrations and Sr, Nd, Pb, Hf and U-Th-Ra isotope data for selected glasses as well as new Hf isotope data from boninites and seamounts to the north of the Tonga arc. The Pb and Hf isotope data are used to show that mantle flow is oriented to the southwest and that the tear in the northern end of the slab may not extend east as far as the boninite locality. Along the Fonualei Spreading Center, key geochemical parameters change smoothly with increasing distance from the arc front and increasing slab surface temperatures. The latter may range from 720 to 866 degrees C, based on decreasing H2O/Ce ratios. Consistent with experimental data, the geochemical trends are interpreted to reflect changes in the amount and composition of wet pelite melts or super-critical fluids and aqueous fluids derived from the slab. With one exception, all of the lavas preserve both U-238 excesses and Ra-226 excesses. We suggest that lavas from the Fonualei Spreading Center and Valu Fa Ridge are dominated by fluid-fluxed melting whereas those from the East and Central Lau Spreading Centers, where slab surface temperatures exceed similar to 850-900 degrees C, are largely derived through decompression. A similar observation is found for the Manus and East Scotia back-arc basins and may reflect the expiry of a key phase such as lawsonite in the subducted basaltic crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents and discusses the tsunami hazard posed by an updated CSZ earthquake scenerio to the coastal communities of Port Angeles and Port Townsend, based on the results of a high resolution GeoClaw simulation with 2/3 arc second resolution (about 20.56 meters) surrounding these towns. In addition, we will also present the results of a coarse regional simulation of the Strait of Juan de Fuca. This coarse study encompasses 28 regions that span the Strait’s coast, including the communities of Anacortes, Bellingham, Friday Harbor, and Victoria, BC in addition to extended areas around Port Angeles and Port Townsend. The finest grid for these 28 regions where we collected results had 2 arc sec resolution (around 62 meters). Finally, we will discuss some inherent uncertainties in the specification of the earthquake scenario, the limitations of the GeoClaw model, and the associated uncertainites in the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The purpose of this study is to unravel the geodynamic evolution of Thailand and, from that, to extend the interpretation to the rest of Southeast Asia. The methodology was based in a first time on fieldwork in Northern Thailand and Southernmost Myanmar, using a multidisciplinary approach, and then on the compilation and re-interpretation, in a plate tectonics point of view, of existing data about the whole Southeast Asia. The main results concern the Nan-Uttaradit suture, the Chiang Mai Volcanic Belt and the proposition of a new location for the Palaeotethys suture. This led to the establishment of a new plate tectonic model for the geodynamic evolution of Southeast Asia, implying the existence new terranes (Orang Laut and the redefinition of Shan-Thai) and the role of the Palaeopacific Ocean in the tectonic development of the area. The model proposed here considers the Palaeotethys suture as located along the Tertiary Mae Yuam Fault, which represents the divide between the Cimmerian Sibumasu terrane and the Indochina-derived Shan-Thai block. The term Shan-Thai, previously used to define the Cimmerian area (when the Palaeotethys suture was thought to represented by the Nan-Uttaradit suture), was redefined here by keeping its geographical location within the Shan States of Myanmar and Central-Northern Thailand, but attributing it an East Asian Origin. Its detachment from Indochina was the result of the Early Permian opening of the Nan basin. The Nan basin closed during the Middle Triassic, before the deposition of Carnian-Norian molasse. The modalities of the closure of the basin imply a first phase of Middle Permian obduction, followed by final eastwards subduction. The Chiang Mai Volcanic Belt consists of scattered basaltic rocks erupted at least during the Viséan in an extensional continental intraplate setting, on the Shan-Thai part of the Indochina block. The Viséan age was established by the dating of limestone stratigraphically overlying the basalts. In several localities of the East Asian Continent, coeval extensional features occur, possibly implying one or more Early Carboniferous extensional events at a regional scale. These events occurred either due to the presence of a mantle plume or to the roll-back of the Palaeopacific Ocean, subducting beneath Indochina and South China, or both. The Palaeopacific Ocean is responsible, during the Early Permian, for the opening of the Song Ma and Poko back-arcs (Vietnam) with the consequent detachment of the Orang Laut Terranes (Eastern Vietnam, West Sumatra, Kalimantan, Palawan, Taiwan). The Late Triassic/Early Jurassic closure of the Eastern Palaeotethys is considered as having taken place by subduction beneath its southern margin (Gondwana), due to the absence of Late Palaeozoic arc magmatism on its northern (Indochinese) margin and the presence of volcanism on the Cimmerian blocks (Mergui, Lhasa). Résumé Le but de cette étude est d'éclaircir l'évolution géodynamique de la Thaïlande et, à partir de cela, d'étendre l'interprétation au reste de l'Asie du Sud-Est. La méthodologie utilisée est basée dans un premier temps sur du travail de terrain en Thaïlande du nord et dans l'extrême sud du Myanmar, en se basant sur une approche pluridisciplinaire. Dans un deuxième temps, la compilation et la réinterprétation de données préexistantes sur l'Asie du Sud-est la été faite, dans une optique basée sur la tectonique des plaques. Les principaux résultats de ce travail concernent la suture de Nan-Uttaradit, la « Chiang Mai Volcanic Belt» et la proposition d'une nouvelle localité pour la suture de la Paléotethys. Ceci a conduit à l'établissement d'un nouveau modèle pour l'évolution géodynamique de l'Asie du Sud-est, impliquant l'existence de nouveaux terranes (Orang Laut et Shan-Thai redéfini) et le rôle joué par le Paléopacifique dans le développement tectonique de la région. Le modèle présenté ici considère que la suture de la Paléotethys est située le long de la faille Tertiaire de Mae Yuam, qui représente la séparation entre le terrain Cimmérien de Sibumasu et le bloc de Shan-Thai, d'origine Indochinoise. Le terme Shan-Thai, anciennement utilise pour définir le bloc Cimmérien (quand la suture de la Paléotethys était considérée être représentée par la suture de Nan-Uttaradit), a été redéfini ici en maintenant sa localisation géographique dans les états Shan du Myanmar et la Thaïlande nord-centrale, mais en lui attribuant une origine Est Asiatique. Son détachement de l'Indochine est le résultat de l'ouverture du basin de Nan au Permien Inférieur. Le basin de Nan s'est fermé pendant le Trias Moyen, avant le dépôt de molasse Carnienne-Norienne. Les modalités de fermeture du basin invoquent une première phase d'obduction au Permien Moyen, suivie par une subduction finale vers l'est. La "Chiang Mai Volcanic Belt" consiste en des basaltes éparpillés qui ont mis en place au moins pendant le Viséen dans un contexte extensif intraplaque continental sur la partie de l'Indochine correspondant au bloc de Shan-Thai. L'âge Viséen a été établi sur la base de la datation de calcaires qui surmontent stratigraphiquement les basaltes. Dans plusieurs localités du continent Est Asiatique, des preuves d'extension plus ou moins contemporaines ont été retrouvées, ce qui implique l'existence d'une ou plusieurs phases d'extension au Carbonifère Inférieur a une échelle régionale. Ces événements sont attribués soit à la présence d'un plume mantellique, ou au rollback du Paléopacifique, qui subductait sous l'Indochine et la Chine Sud, soit les deux. Pendant le Permien inférieur, le Paléopacifique est responsable pour l'ouverture des basins d'arrière arc de Song Ma et Poko (Vietnam), induisant le détachement des Orang Laut Terranes (Est Vietnam, Ouest Sumatra, Kalimantan, Palawan, Taiwan). La fermeture de la Paléotethys Orientale au Trias Supérieur/Jurassique Inférieur est considérée avoir eu lieu par subduction sous sa marge méridionale (Gondwana), à cause de l'absence de magmatisme d'arc sur sa marge nord (Indochinoise) et de la présence de volcanisme sur les blocs Cimmériens de Lhassa et Sibumasu (Mergui). Résumé large public L'histoire géologique de l'Asie du Sud-est depuis environ 430 millions d'années a été déterminée par les collisions successives de plusieurs continents les uns avec les autres. Il y a environ 430 millions d'années, au Silurien, un grand continent appelé Gondwana, a commencé à se «déchirer» sous l'effet des contraintes tectoniques qui le tiraient. Cette extension a provoqué la rupture du continent et l'ouverture d'un grand océan, appelé Paléotethys, éloignant les deux parties désormais séparées. C'est ainsi que le continent Est Asiatique, composé d'une partie de la Chine actuelle, de la Thaïlande, du Myanmar, de Sumatra, du Vietnam et de Bornéo a été entraîné avec le bord (marge) nord de la Paléotethys, qui s'ouvrait petit à petit. Durant le Carbonifère Supérieur, il y a environ 300 millions d'années, le sud du Gondwana subissait une glaciation, comme en témoigne le dépôt de sédiments glaciaires dans les couches de cet âge. Au même moment le continent Est Asiatique se trouvait à des latitudes tropicales ou équatoriales, ce qui permettait le dépôt de calcaires contenant différents fossiles de foraminifères d'eau chaude et de coraux. Durant le Permien Inférieur, il y a environ 295 millions d'années, la Paléotethys Orientale, qui était un relativement vieil océan avec une croûte froide et lourde, se refermait. La croûte océanique a commencé à s'enfoncer, au sud, sous le Gondwana. C'est ce que l'on appelle la subduction. Ainsi, le Gondwana s'est retrouvé en position de plaque supérieure, par rapport à la Paléotethys qui, elle, était en plaque inférieure. La plaque inférieure en subductant a commencé à reculer. Comme elle ne pouvait pas se désolidariser de la plaque supérieure, en reculant elle l'a tirée. C'est le phénomène du «roll-back ». Cette traction a eu pour effet de déchirer une nouvelle fois le Gondwana, ce qui a résulté en la création d'un nouvel Océan, la Neotethys. Cet Océan en s'ouvrant a déplacé une longue bande continentale que l'on appelle les blocs Cimmériens. La Paléotethys était donc en train de se fermer, la Neotethys de s'ouvrir, et entre deux les blocs Cimmériens se rapprochaient du Continent Est Asiatique. Pendant ce temps, le continent Est Asiatique était aussi soumis à des tensions tectoniques. L'Océan Paléopacifique, à l'est de celui-ci, était aussi en train de subducter. Cette subduction, par roll-back, a déchiré le continent en détachant une ligne de microcontinents appelés ici « Orang Laut Terranes », séparés du continent par deux océans d'arrière arc : Song Ma et Poko. Ceux-ci sont composés de Taiwan, Palawan, Bornéo ouest, Vietnam oriental, et la partie occidentale de Sumatra. Un autre Océan s'est ouvert pratiquement au même moment dans le continent Est Asiatique : l'Océan de Nan qui, en s'ouvrant, a détaché un microcontinent appelé Shan-Thai. La fermeture de l'Océan de Nan, il y a environ 230 millions d'années a resolidarisé Shan-Thai et le continent Est Asiatique et la trace de cet événement est aujourd'hui enregistrée dans la suture (la cicatrice de l'Océan) de Nan-Uttaradit. La cause de l'ouverture de l'Océan de Nan peut soit être due à la subduction du Paléopacifique, soit aux fait que la subduction de la Paléotethys tirait le continent Est Asiatique par le phénomène du « slab-pull », soit aux deux. La subduction du Paléopacifique avait déjà crée de l'extension dans le continent Est Asiatique durant le Carbonifère Inférieur (il y a environ 340-350 millions d'années) en créant des bassins et du volcanisme, aujourd'hui enregistré en différents endroits du continent, dont la ceinture volcanique de Chiang Mai, étudiée ici. A la fin du Trias, la Paléotethys se refermait complètement, et le bloc Cimmérien de Sibumasu entrait en collision avec le continent Est Asiatique. Comme c'est souvent le cas avec les grands océans, il n'y a pas de suture proprement dite, avec des fragments de croûte océanique, pour témoigner de cet évènement. Celui-ci est visible grâce à la différence entre les sédiments du Carbonifère Supérieur et du Permieñ Inférieur de chaque domaine : dans le domaine Cimmérien ils sont de type glaciaire alors que dans le continent Est Asiatique ils témoignent d'un climat tropical. Les océans de Song Ma et Poko se sont aussi refermés au Trias, mais eux ont laissé des sutures visibles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of volcanic rocks from Alboran Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alboran Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (similar to0.5xN-MORB), especially Nb (similar to0.2xN-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. Nd-143/Nd-144 ratios fall in the same range as many island-arc and back-arc basin samples, whereas Sr-87/Sr-86 ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (Sr-87/Sr-86)(0) up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westemmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the southwestern part of the Aiguilles Rouges massif (pre-Alpine basement of the Helvetic realm, western Alps), a metavolcanic sequence, newly defined as the ``Greenstone Unit'',is exposed in two NS trending belts of several 100 metres in thickness. It consists of epidote amphibolites, partly epidote and/or calcic amphibole-bearing greenschists, and small amounts of alkali feldspar-bearing greenschists, which underwent low- to medium-grade metamorphism during Visean oblique collision. Metamorphic calcic amphiboles and epidotes show strong chemical zoning, whereas metamorphic plagioclase is exclusively albitic in composition (An 1-3). The SiO2 content of the subalkaline tholeiitic to calc-alkaline suite ranges continuously from 44 wt% to 73 wt%,but andesitic rocks predominate. The majority of samples have chemical compositions close to recent subduction-related lavas; some are even restricted to recent oceanic arcs (extremely low Ta and Nb contents, high La/Nb and Th/Ta ratios). But several basaltic to basalto-andesitic samples resemble continental tholeiites (low Th/Ta, La/Nb ratio). As it is very probable that both lava types are to some extent contemporaneous, it is proposed that the Greenstone Unit represents a former oceanic volcanic are which temporarily underwent extension during which emplacement of continental tholeiite-like rocks occurred. The cause of the extension remains ambiguous. Considering palaeotectonic significance and age of other metavolcanic units in the Aiguilles Rouges massif, the Greenstone Unit most likely formed in the Early Palaeozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The McElroy and Larder Lake assemblages, located in the southern Abitibi Greenstone Belt are two late Archean metavolcanic sequences having markedly contrasting physical characteristics arid are separated from one another by a regional fault. An assemblage is an informal term which describes stratified volcanic and/or sedimentary rock units built during a specific time period in a similar depositional or volcanic setting and are commonly bounded by faults, unconformities or intrusions. The petrology and petrogenesis of these assemblages have been investigated to determine if a genetic link exists between the two adjacent assemblages. The McElroy assemblage is homoclinal sequence of evolved massive and pillowed fl.ows, which except for the basal unit represents a progressively fractionated volcanic pile. From the base to the top of the assemblage the lithologies include Fe-tholeiitic, dendritic flows; komatiite basaltic, ultramafic flows; Mg-tholeiitic, leucogabbro; Mg-tholeiitic, massive flows and Fe-tholeiitic, pillowed flows. Massive flows range from coarse grained to aphanitic and are commonly plagioclase glomerophyric. The Larder Lake assemblage consists of komatiitic, Mg-rich and Fe-rich tholeiitic basalts, structurally disrupted by folds and faults. Tholeiitic rocks in the Larder Lake assemblage range from aphanitic to coarse grained massive and pillowed flows. Komatiitic flows contain both spinifex and massive textures. Geochemical variability within both assemblages is attributed to different petrogenetic histories. The lithologies of the McElroy assemblage were derived by partial melting of a primitive mantle source followed by various degrees of crystal fractionation. Partial melting of a primitive mantle source generated the ultramafic flows and possibly other flows in the assemblage. Fractionation of ultramafic flows may have also produced the more evolved McElroy lithologies. The highly evolved, basal, dendritic flow may represent the upper unit 3 of a missing volcanic pile in which continued magmatism generated the remaining McElroy lithologies. Alternatively, the dendritic flows may represent a primary lava derived from a low degree (10-15%) partial melt of a primitive mantle source which was followed by continued partial melting to generate the ultramafic flows. The Larder Lake lithologies were derived by partial melting of a komatiitic source followed by gabbroic fractionation. The tectonic environment for both assemblages is interpreted to be an oceanic arc setting. The McElroy assemblage lavas were generated in a mature back arc setting whereas the Larder Lake lithologies were produced during the early stages of komatiitc crust subduction. This setting is consistent with previous models involving plate tectonic processes for the generation of other metavolcanic assemblages in the Abitibi Greenstone Belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Andaman-Nicobar Islands in the Bay of Bengal lies in a zone where the Indian plate subducts beneath the Burmese microplate, and therefore forms a belt of frequent earthquakes. Few efforts, not withstanding the available historical and instrumental data were not effectively used before the Mw 9.3 Sumatra-Andaman earthquake to draw any inference on the spatial and temporal distribution of large subduction zone earthquakes in this region. An attempt to constrain the active crustal deformation of the Andaman-Nicobar arc in the background of the December 26, 2004 Great Sumatra-Andaman megathrust earthquake is made here, thereby presenting a unique data set representing the pre-seismic convergence and co-seismic displacement.Understanding the mechanisms of the subduction zone earthquakes is both challenging sCientifically and important for assessing the related earthquake hazards. In many subduction zones, thrust earthquakes may have characteristic patterns in space and time. However, the mechanism of mega events still remains largely unresolved.Large subduction zone earthquakes are usually associated with high amplitude co-seismic deformation above the plate boundary megathrust and the elastic relaxation of the fore-arc. These are expressed as vertical changes in land level with the up-dip part of the rupture surface uplifted and the areas above the down-dip edge subsided. One of the most characteristic pattern associated with the inter-seismic era is that the deformation is in an opposite sense that of co-seismic period.This work was started in 2002 to understand the tectonic deformation along the Andaman-Nicobar arc using seismological, geological and geodetic data. The occurrence of the 2004 megathrust earthquake gave a new dimension to this study, by providing an opportunity to examine the co-seismic deformation associated with the greatest earthquake to have occurred since the advent of Global Positioning System (GPS) and broadband seismometry. The major objectives of this study are to assess the pre-seismic stress regimes, to determine the pre-seismic convergence rate, to analyze and interpret the pattern of co-seismic displacement and slip on various segments and to look out for any possible recurrence interval for megathrust event occurrence for Andaman-Nicobar subduction zone. This thesis is arranged in six chapters with further subdivisions dealing all the above aspects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to study the variation in subduction zone geometry along and across the arc and the fault pattern within the subducting plate. Depth of penetration as well as the dip of the Benioff zone varies considerably along the arc which corresponds to the curvature of the fold- thrust belt which varies from concave to convex in different sectors of the arc. The entire arc is divided into 27 segments and depth sections thus prepared are utilized to investigate the average dip of the Benioff zone in the different parts of the entire arc, penetration depth of the subducting lithosphere, the subduction zone geometry underlying the trench, the arctrench gap, etc.The study also describes how different seismogenic sources are identified in the region, estimation of moment release rate and deformation pattern. The region is divided into broad seismogenic belts. Based on these previous studies and seismicity Pattern, we identified several broad distinct seismogenic belts/sources. These are l) the Outer arc region consisting of Andaman-Nicobar islands 2) the back-arc Andaman Sea 3)The Sumatran fault zone(SFZ)4)Java onshore region termed as Jave Fault Zone(JFZ)5)Sumatran fore arc silver plate consisting of Mentawai fault(MFZ)6) The offshore java fore arc region 7)The Sunda Strait region.As the Seismicity is variable,it is difficult to demarcate individual seismogenic sources.Hence, we employed a moving window method having a window length of 3—4° and with 50% overlapping starting from one end to the other. We succeeded in defining 4 sources each in the Andaman fore arc and Back arc region, 9 such sources (moving windows) in the Sumatran Fault zone (SFZ), 9 sources in the offshore SFZ region and 7 sources in the offshore Java region. Because of the low seismicity along JFZ, it is separated into three seismogenic sources namely West Java, Central Java and East Java. The Sunda strait is considered as a single seismogenic source.The deformation rates for each of the seismogenic zones have been computed. A detailed error analysis of velocity tensors using Monte—Carlo simulation method has been carried out in order to obtain uncertainties. The eigen values and the respective eigen vectors of the velocity tensor are computed to analyze the actual deformation pattem for different zones. The results obtained have been discussed in the light of regional tectonics, and their implications in terms of geodynamics have been enumerated.ln the light of recent major earthquakes (26th December 2004 and 28th March 2005 events) and the ongoing seismic activity, we have recalculated the variation in the crustal deformation rates prior and after these earthquakes in Andaman—Sumatra region including the data up to 2005 and the significant results has been presented.ln this chapter, the down going lithosphere along the subduction zone is modeled using the free air gravity data by taking into consideration the thickness of the crustal layer, the thickness of the subducting slab, sediment thickness, presence of volcanism, the proximity of the continental crust etc. Here a systematic and detailed gravity interpretation constrained by seismicity and seismic data in the Andaman arc and the Andaman Sea region in order to delineate the crustal structure and density heterogeneities a Io nagnd across the arc and its correlation with the seismogenic behaviour is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorine stable isotope compositions ( delta Cl-37) of 22 mid- ocean ridge basalts ( MORBs) correlate with Cl content. The high-delta Cl-37, Cl- rich basalts are highly contaminated by Cl- rich materials ( seawater, brines, or altered rocks). The low-delta(37) Cl, Cl- poor basalts approach the composition of uncontaminated, mantle- derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB- source mantle has delta(37) Cl <= -1.6 per mil (%), which is significantly lower than that of surface reservoirs (similar to 0 parts per thousand not equal). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation ( associated with removal of Cl from the mantle and its return by subduction over Earth history) and/ or the addition ( to external reservoirs) of a late volatile supply that is Cl-37- enriched.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the formation and propagation of volume anomalies in North Atlantic Mode Waters is presented, based on 100 yr of monthly mean fields taken from the control run of the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3). Analysis of the temporal and. spatial variability in the thickness between pairs of isothermal surfaces bounding the central temperature of the three main North Atlantic subtropical mode waters shows that large-scale variability in formation occurs over time scales ranging from 5 to 20 yr. The largest formation anomalies are associated with a southward shift in the mixed layer isothermal distribution, possibly due to changes in the gyre dynamics and/or changes in the overlying wind field and air-sea heat fluxes. The persistence of these anomalies is shown to result from their subduction beneath the winter mixed layer base where they recirculate around the subtropical gyre in the background geostrophic flow. Anomalies in the warmest mode (18 degrees C) formed on the western side of the basin persist for up to 5 yr. They are removed by mixing transformation to warmer classes and are returned to the seasonal mixed layer near the Gulf Stream where the stored heat may be released to the atmosphere. Anomalies in the cooler modes (16 degrees and 14 degrees C) formed on the eastern side of the basin persist for up to 10 yr. There is no clear evidence of significant transformation of these cooler mode anomalies to adjacent classes. It has been proposed that the eastern anomalies are removed through a tropical-subtropical water mass exchange mechanism beneath the trade wind belt (south of 20 degrees N). The analysis shows that anomalous mode water formation plays a key role in the long-term storage of heat in the model, and that the release of heat associated with these anomalies suggests a predictable climate feedback mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical experiments are described that pertain to the climate of a coupled atmosphere–ocean–ice system in the absence of land, driven by modern-day orbital and CO2 forcing. Millennial time-scale simulations yield a mean state in which ice caps reach down to 55° of latitude and both the atmosphere and ocean comprise eastward- and westward-flowing zonal jets, whose structure is set by their respective baroclinic instabilities. Despite the zonality of the ocean, it is remarkably efficient at transporting heat meridionally through the agency of Ekman transport and eddy-driven subduction. Indeed the partition of heat transport between the atmosphere and ocean is much the same as the present climate, with the ocean dominating in the Tropics and the atmosphere in the mid–high latitudes. Variability of the system is dominated by the coupling of annular modes in the atmosphere and ocean. Stochastic variability inherent to the atmospheric jets drives variability in the ocean. Zonal flows in the ocean exhibit decadal variability, which, remarkably, feeds back to the atmosphere, coloring the spectrum of annular variability. A simple stochastic model can capture the essence of the process. Finally, it is briefly reviewed how the aquaplanet can provide information about the processes that set the partition of heat transport and the climate of Earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initializing the ocean for decadal predictability studies is a challenge, as it requires reconstructing the little observed subsurface trajectory of ocean variability. In this study we explore to what extent surface nudging using well-observed sea surface temperature (SST) can reconstruct the deeper ocean variations for the 1949–2005 period. An ensemble made with a nudged version of the IPSLCM5A model and compared to ocean reanalyses and reconstructed datasets. The SST is restored to observations using a physically-based relaxation coefficient, in contrast to earlier studies, which use a much larger value. The assessment is restricted to the regions where the ocean reanalyses agree, i.e. in the upper 500 m of the ocean, although this can be latitude and basin dependent. Significant reconstruction of the subsurface is achieved in specific regions, namely region of subduction in the subtropical Atlantic, below the thermocline in the equatorial Pacific and, in some cases, in the North Atlantic deep convection regions. Beyond the mean correlations, ocean integrals are used to explore the time evolution of the correlation over 20-year windows. Classical fixed depth heat content diagnostics do not exhibit any significant reconstruction between the different existing observation-based references and can therefore not be used to assess global average time-varying correlations in the nudged simulations. Using the physically based average temperature above an isotherm (14 °C) alleviates this issue in the tropics and subtropics and shows significant reconstruction of these quantities in the nudged simulations for several decades. This skill is attributed to the wind stress reconstruction in the tropics, as already demonstrated in a perfect model study using the same model. Thus, we also show here the robustness of this result in an historical and observational context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic-Jurassic (T-J) boundary (-200 Ma), is among the largest igneous provinces on Earth. The Maranhao basin in NE Brazil is located around 700 km inland and 2000 km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhao basin. The major and trace elements and the Sr-Nd-Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO(2)< 1.3 wt.%), high-Ti (TiO(2)-2.0 wt.%) and evolved high-Ti (TiO(2 >)3 wt.%) western Maranhao basin tholeiites (WMBT). The new (40)Ar/(39)Ar plateau ages obtained on plagioclase separates for high-Ti (199.7 +/- 2.4 Ma) and evolved high-Ti WMBT (197.2 +/- 0.5 Ma and 198.2 +/- 0.6 Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5 +/- 0.8 Ma) and to the mean (40)Ar/(39)Ar age of the CAMP (199 +/- 2.4 Ma). We also present the first Re-Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial ((187)Os/(188)Os)(i) ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic (((187)Os/ (188)Os)(i) up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhao basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier. (C) 2010 Elsevier BM. All rights reserved.