999 resultados para Stephen, James Fitzjames, 1829-1894


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The site of present-day St. Catharines was settled by 3000 United Empire Loyalists at the end of the 18th century. From 1790, the settlement (then known as "The Twelve") grew as an agricultural community. St. Catharines was once referred to Shipman's Corners after Paul Shipman, owner of a tavern that was an important stagecoach transfer point. In 1815, leading businessman William Hamilton Merritt abandoned his wharf at Queenston and set up another at Shipman's Corners. He became involved in the construction and operation of several lumber and gristmills along Twelve Mile Creek. Shipman's Corners soon became the principal milling site of the eastern Niagara Peninsula. At about the same time, Merritt began to develop the salt springs that were discovered along the river which subsequently gave the village a reputation as a health resort. By this time St. Catharines was the official name of the village; the origin of the name remains obscure, but is thought to be named after Catharine Askin Robertson Hamilton, wife of the Hon. Robert Hamilton, a prominent businessman. Merritt devised a canal scheme from Lake Erie to Lake Ontario that would provide a more reliable water supply for the mills while at the same time function as a canal. He formed the Welland Canal Company, and construction took place from 1824 to 1829. The canal and the mills made St. Catharines the most important industrial centre in Niagara. By 1845, St. Catharines was incorporated as a town, with the town limits extending in 1854. Administrative and political functions were added to St. Catharines in 1862 when it became the county seat of Lincoln. In 1871, construction began on the third Welland Canal, which attracted additional population to the town. As a consequence of continual growth, the town limits were again extended. St. Catharines attained city status in 1876 with its larger population and area. Manufacturing became increasingly important in St. Catharines in the early 1900s with the abundance of hydro-electric power, and its location on important land and water routes. The large increase in population after the 1900s was mainly due to the continued industrialization and urbanization of the northern part of the city and the related expansion of business activity. The fourth Welland Canal was opened in 1932 as the third canal could no longer accommodate the larger ships. The post war years and the automobile brought great change to the urban form of St. Catharines. St. Catharines began to spread its boundaries in all directions with land being added five times during the 1950s. The Town of Merritton, Village of Port Dalhousie and Grantham Township were all incorporated as part of St. Catharines in 1961. In 1970 the Province of Ontario implemented a regional approach to deal with such issues as planning, pollution, transportation and services. As a result, Louth Township on the west side of the city was amalgamated, extending the city's boundary to Fifteen Mile Creek. With its current population of 131,989, St. Catharines has become the dominant centre of the Niagara region. Source: City of St. Catharines website http://www.stcatharines.ca/en/governin/HistoryOfTheCity.asp (January 27, 2011)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

by J. R. L. Macdonald

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.