939 resultados para Stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. STEM CELLS 2012;30:405-414.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le mécanisme biologique responsable pour l’augmentation de l’expression de la protéine nestin dans les cellules souches neurales (CSN) du cœur après un infarctus du myocarde (IM) demeure inconnu. Des études antérieures ont démontré que le traitement au dexamethasone, un glucocorticoïde aux propriétés anti-inflammatoires, abolit la régulation positive de nestin après un IM. Ceci suggère un lien avec la réponse inflammatoire. Nous avons vérifié dans cette étude l’hypothèse que la cytokine inflammatoire interleukin-1beta (IL-1beta) peut modifier le phénotype de cellules souches neurales. Le deuxième objectif de l’étude fut d’établir l’impact, suivant un IM, de l’inhibition de la signalisation de IL-1beta sur la fonction et la guérison cardiaque. Suite à une ligature complète de l’artère coronaire du rat mâle, le dysfonctionnement contractile du ventricule gauche fut associé à une régulation positive de la protéine nestin dans le myocarde non-infarci. Le traitement avec Xoma 052 (1 mg/kg), un anticorps anti-IL-1beta, 24h, 7 et 14 jours après un évènement ischémique, eu aucun effet sur la taille de l’infarctus ou la contractilité du ventricule gauche. De plus, le traitement avec Xoma 052 après un IM n’a pu supprimer l’augmentation de l’expression de nestin et Bcl-2 malgré une réduction modeste du niveau de la protéine Bax. Pour déterminer directement le rôle de la réponse inflammatoire en l’absence d’ischémie, nous avons injecté des rats mâles avec du LPS (10mg/kg, 18hrs). Dans le coeur du rat-LPS, nous avons noté une augmentation significative du niveau d’ARNm de IL-1beta et de l’expression de la protéine nestin. Le prétraitement avec 10mg/kg de Xoma 052 a aboli l’augmentation de l’expression de nestin dans le coeur des rats-LPS. Ces observations indiquent que les cellules souches neurales pourraient représenter une cible potentielle de l’IL-1beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induced pluripotent stem cells (iPSC) have the capacity to self renew and differentiate into a myriad of cell types making them potential candidates for cell therapy and regenerative medicine. The goal of this thesis was to determine the characteristics of equine iPSC (eiPSC) that can be harnessed for potential use in veterinary regenerative medicine. Trauma to a horse’s limb often leads to the development of a chronic non-healing wound that lacks a keratinocyte cover, vital to healing. Thus, the overall hypothesis of this thesis was that eiPSC might offer a solution for providing wound coverage for such problematic wounds. Prior to considering eiPSC for clinical applications, their immunogenicity must be studied to ensure that the transplanted cells will be accepted and integrate into host tissues. The first objective of this thesis was to determine the immune response to eiPSC. To investigate the immunogenicity of eiPSC, the expression of major histocompatibility complex (MHC) molecules by the selected lines was determined, then the cells were used in an intradermal transplantation model developed for this study. While transplantation of allogeneic, undifferentiated eiPSC elicited a moderate cellular response in experimental horses, it did not cause acute rejection. This strategy enabled the selection of weakly immunogenic eiPSC lines for subsequent differentiation into lineages of therapeutic importance. Equine iPSC offer a potential solution to deficient epithelial coverage by providing a keratinocyte graft with the ability to differentiate into other accessory structures of the epidermis. The second objective of this thesis was to develop a protocol for the differentiation of eiPSC into a keratinocyte lineage. The protocol was shown to be highly efficient at inducing the anticipated phenotype within 30 days. Indeed, the eiPSC derived vi keratinocytes (eiPSC-KC) showed both morphologic and functional characteristics of primary equine keratinocytes (PEK). Moreover, the proliferative capacity of eiPSC-KC was superior while the migratory capacity, measured as the ability to epithelialize in vitro wounds, was comparable to that of PEK, suggesting exciting potential for grafting onto in vivo wound models. In conclusion, equine iPSC-derived keratinocytes exhibit features that are promising to the development of a stem cell-based skin construct with the potential to fully regenerate lost or damaged skin in horses. However, since eiPSC do not fully escape immune surveillance despite low MHC expression, strategies to improve engraftment of iPSC derivatives must be pursued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the prion protein (PrP) is expressed on the surface of bone marrow cell populations enriched in long-term repopulating hematopoietic stem cells. Affinity purification of the PrP-positive and PrP-negative fractions from these populations, followed by competitive reconstitution assays, show that all long-term repopulating hematopoietic stem cells express PrP. Hematopoietic stem cells from PrP null bone marrow exhibit impaired self-renewal in serial competitive transplantation experiments, and premature exhaustion when exposed to cell cycle-specific myelotoxic injury. Therefore, PrP is a novel marker for hematopoietic stem cells and regulates their self-renewal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood tissue is composed approximately in 45% by cells and its derivatives, with a life span of around 120 days for erythrocytes and 3 years for certain type of lymphocytes. This lost is compensated with the hematopoietic system activity and the presence of an immature primitive cell population known as Hematopoietic Stem Cells (HSCs) which perform the hematopoiesis, a process that is active from the beginning of the fetal life and produces near to 2 x 1011 eritrocytes and 1010 white blood cells per day (1). Hematopoietic Stem Cells are capable of both self-renewal and differentiation into multiple lineages, are located in a particular niche and are identified by their own cell surface markers, as the CD34 antigen. Recently it has been possible to advance in the understanding of self-renewal, differentiation and proliferation processes and in the involvement of the signaling pathways Hedgehog, Notch and Wnt. Studying the influence of these mechanisms on in vivo and in vitro behavior and the basic biology of HSCs, has given valuable tools for the generation of alternative therapies for hematologic disorders as leukemias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This series of experiments attempted to characterize the abilities of stem cells derived from bone marrow and adipose tissue to integrate into the sensory epithelium of the inner ear and to differentiate into hair cells or neural cell types.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely recognized that gain- and loss-of-function approaches are essential for understanding the functions of specific genes, and such approaches would be particularly valuable in studies involving human embryonic stem (hES) cells. We describe a simple and efficient approach using lipofection to transfect hES cells, which enabled us to generate hES cell lines expressing naturally fluorescent green or red proteins without affecting cell pluripotency. We used these cell lines to establish a means of diminishing gene function using small interfering (si)RNAs, which were effective at knocking down gene expression in hES cells. We then demonstrated that stable expression of siRNA could knock down the expression of endogenous genes. Application of these gain- and loss-of-function approaches should have widespread use, not only in revealing the developmental roles of specific human genes, but also for their utility in modulating differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient transport of stem/progenitor cells without affecting their survival and function is a key factor in any practical cell-based therapy. However, the current approach using liquid nitrogen for the transfer of stem cells requires a short delivery time window is technically challenging and financially expensive. The present study aims to use semipermeable alginate hydrogels (crosslinked by strontium) to encapsulate, store, and release stem cells, to replace the conventional cryopreservation method for the transport of therapeutic cells within world-wide distribution time frame. Human mesenchymal stem cell (hMSC) and mouse embryonic stem cells (mESCs) were successfully stored inside alginate hydrogels for 5 days under ambient conditions in an air-tight environment (sealed cryovial). Cell viability, of the cells extracted from alginate gel, gave 74% (mESC) and 80% (hMSC) survival rates, which compared favorably to cryopreservation. More importantly, the subsequent proliferation rate and detection of common stem cell markers (both in mRNA and protein level) from hMSCs and mESCs retrieved from alginate hydrogels were also comparable to (if not better than) results gained following cryopreservation. In conclusion, this new and simple application of alginate hydrogel encapsulation may offer a cheap and robust alternative to cryopreservation for the transport and storage of stem cells for both clinical and research purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells 2013;31:1868-1880.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limbal epithelial stem cells may ameliorate limbal stem cell deficiency through secretion of therapeutic proteins, delivered to the cornea in a controlled manner using hydrogels. In the present study the secretome of alginate-encapsulated limbal epithelial stem cells is investigated. Conditioned medium was generated from limbal epithelial stem cells encapsulated in 1.2% (w/v) calcium alginate gels. Conditioned medium proteins separated by 1-D gel electrophoresis were visualized by silver staining. Proteins of interest including secreted protein acidic and rich in cysteine, profilin-1, and galectin-1 were identified by immunoblotting. The effect of conditioned medium (from alginate-encapsulated limbal epithelial stem cells) on corneal epithelial cell proliferation was quantified and shown to significantly inhibit (Pcells, this protein may be responsible, at least in part, for inhibition of corneal epithelial cell proliferation. We conclude that limbal epithelial stem cells encapsulated in alginate gels may regulate corneal epithelialisation through secretion of inhibitory proteins.