906 resultados para Steel Structures, Hollow Flange Channel, Moment Capacity, Innovation, Cold Formed
Resumo:
As vigas mistas de aço e concreto estão sendo largamente utilizadas em construções de edifícios e pontes. Ao se combinar o aço com o concreto obtêm-se estruturas mais econômicas, uma vez que se tira proveito das melhores características de cada material. Nas regiões de momento negativo de uma viga mista contínua, a mesa inferior e parte da alma estão comprimidas, se a alma do perfil não tiver rigidez suficiente para evitar a flexão lateral, ela distorcerá gerando um deslocamento lateral e um giro na mesa comprimida, caracterizando um modo de flambagem denominado flambagem lateral com distorção (FLD). O procedimento de verificação à FLD da EN 1994-1-1:2004 originou o método de cálculo da ABNT NBR 8800:2008, entretanto a EN 1994-1-1:2004 não fornece expressão para o cálculo do momento crítico elástico, enquanto a ABNT NBR 8800:2008 prescreve uma formulação proposta por Roik, Hanswille e Kina (1990) desenvolvida para vigas mistas com perfis de alma plana. Embora as normas prescrevam um método de verificação à FLD para vigas mistas com perfis de alma plana, poucos estudos têm sido feitos sobre esse estado-limite. Além disso, tanto a ABNT NBR 8800:2008 quanto as normas internacionais não abordam perfis de alma senoidal. Neste trabalho, foram implementadas análises de flambagem elástica, com auxílio do software ANSYS 14.0 (2011), em modelos de elementos finitos que retratem o comportamento à FLD de vigas mistas de aço e concreto com perfis de alma plana e senoidal. Os modelos numéricos foram constituídos pelo perfil de aço, por uma mola rotacional que restringe parcialmente o giro da mesa superior e uma restrição ao deslocamento lateral, ao longo de todo o comprimento da viga. Os resultados numéricos são comparados com os obtidos pelas formulações de Roik, Hanswille e Kina (1990) e de Hanswille (2002), adaptadas para levar em consideração a corrugação da alma do perfil de aço. Para avaliação das formulações supracitadas e da consistência da modelagem numérica adotada, o momento crítico elástico foi determinado para vigas mistas com perfis de aço de alma plana. Como resultado, um método para o cálculo do momento crítico elástico de vigas mistas de alma senoidal é proposto.
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Some of the properties sought in seismic design of buildings are also considered fundamental to guarantee structural robustness. Moreover, some key concepts are common to both seismic and robustness design. In fact, both analyses consider events with a very small probability of occurrence, and consequently, a significant level of damage is admissible. As very rare events,in both cases, the actions are extremely hard to quantify. The acceptance of limited damage requires a system based analysis of structures, rather than an element by element methodology, as employed for other load cases. As for robustness analysis, in seismic design the main objective is to guarantee that the structure survives an earthquake, without extensive damage. In the case of seismic design, this is achieved by guaranteeing the dissipation of energy through plastic hinges distributed in the structure. For this to be possible, some key properties must be assured, in particular ductility and redundancy. The same properties could be fundamental in robustness design, as a structure can only sustain significant damage if capable of distributing stresses to parts of the structure unaffected by the triggering event. Timber is often used for primary load‐bearing elements in single storey long‐span structures for public buildings and arenas, where severe consequences can be expected if one or more of the primary load bearing elements fail. The structural system used for these structures consists of main frames, secondary elements and bracing elements. The main frame, composed by columns and beams, can be seen as key elements in the system and should be designed with high safety against failure and under strict quality control. The main frames may sometimes be designed with moment resisting joints between columns and beams. Scenarios, where one or more of these key elements, fail should be considered at least for high consequence buildings. Two alternative strategies may be applied: isolation of collapsing sections and, provision of alternate load paths [1]. The first one is relatively straightforward to provide by deliberately designing the secondary structural system less strong and stiff. Alternatively, the secondary structural system and the bracing system can be design so that loss of capacity in the main frame does not lead to the collapse. A case study has been selected aiming to assess the consequences of these two different strategies, in particular, under seismic loads.
Resumo:
Structure and Infrastructure Engineering, 1-17
Resumo:
The reinforcement mechanisms at the cross section level assured by fibres bridging the cracks in steel fibre reinforced self-compacting concrete (SFRSCC) can be significantly amplified at structural level when the SFRSCC is applied in structures with high support redundancy, such is the case of elevated slab systems. To evaluate the potentialities of SFRSCC as the fundamental material of elevated slab systems, a ¼ scale SFRSCC prototype of a residential building was designed, built and tested. The extensive experimental program includes material tests for characterizing the relevant properties of SFRSCC, as well as structural tests for assessing the performance of the prototype at serviceability and ultimate limit conditions. Three distinct approaches where adopted to derive the constitutive laws of the SFRSCC in tension that were used in finite element material nonlinear analysis to evaluate the reliability of these approaches in the prediction of the load carrying capacity of the prototype.
Resumo:
The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The availability of rich firm-level data sets has recently led researchers to uncover new evidence on the effects of trade liberalization. First, trade openness forces the least productive firms to exit the market. Secondly, it induces surviving firms to increase their innovation efforts and thirdly, it increases the degree of product market competition. In this paper we propose a model aimed at providing a coherent interpretation of these findings. We introducing firm heterogeneity into an innovation-driven growth model, where incumbent firms operating in oligopolistic industries perform cost-reducing innovations. In this framework, trade liberalization leads to higher product market competition, lower markups and higher quantity produced. These changes in markups and quantities, in turn, promote innovation and productivity growth through a direct competition effect, based on the increase in the size of the market, and a selection effect, produced by the reallocation of resources towards more productive firms. Calibrated to match US aggregate and firm-level statistics, the model predicts that a 10 percent reduction in variable trade costs reduces markups by 1:15 percent, firm surviving probabilities by 1 percent, and induces an increase in productivity growth of about 13 percent. More than 90 percent of the trade-induced growth increase can be attributed to the selection effect.
Resumo:
This paper analyses whether a firm’s absorptive capacity and its distance from the technological frontier affect the choice between innovation and imitation in innovative Spanish firms. From an extensive survey of 5,575 firms during the 2004-2009 period, we found two significant results. With regard to the role of absorptive capacity, the empirical evidence shows that when innovative firms have difficulties in accessing external information and hire skilled workers, their innovative capacity is reduced. Meanwhile, with regard to distance from the technological frontier, the firms that reduce this gap manage to increase their innovative capacity at the expense of imitation. To summarise, when we studied firms’ absorptive capacity and their relative position to the technological frontier in tandem, we found that the two factors directly affected firms' ability to innovate or imitate.
Resumo:
This paper explores how absorptive capacity affects the innovative performance and productivity dynamics of Spanish firms. A firm’s efficiency levels are measured using two variables: the labour productivity and the Total Factor Productivity (TFP). The theoretical framework is based on the seminal contributions of Cohen and Levinthal (1989, 1990) regarding absorptive capacity; and the applied framework is based on the four-stage structural model proposed by Crépon, Duguet and Mairesse (1998) for setting the determinants of R&D, the effects of R&D activities on innovation outputs, and the impacts of innovation on firm productivity. The present study uses a twostage structural model. In the first stage, a probit estimation is used to investigate how the sources of R&D, the absorptive capacity and a vector of the firm’s individual features influence the firm’s likelihood of developing innovations in products or processes. In the second phase, a quantile regression is used to analyze the effect of R&D sources, absorptive capacity and firm characteristics on productivity. This method shows the elasticity of each exogenous variable on productivity according to the firms’ levels of efficiency, and thus allows us to distinguish between firms that are close to the technological frontier and those that are further away from it. We used extensive firm-level panel data from 5,575 firms for the 2004-2009 period. The results show that the internal absorptive capacity has a strong impact on the productivity of firms, whereas the role of external absorptive capacity differs according to nature of the each industry and according the distance of firms from the technological frontier. Key words: R&D sources, innovation strategies, absorptive capacity, technological distance, quantile regression.
Resumo:
This paper analyses whether a firm’s absorptive capacity and its distance from the technological frontier affect the choice between innovation and imitation in innovative Spanish firms. From an extensive survey of 5,575 firms during the 2004-2009 period, we found two significant results. With regard to the role of absorptive capacity, the empirical evidence shows that when innovative firms have difficulties in accessing external information and hire skilled workers, their innovative capacity is reduced. Meanwhile, with regard to distance from the technological frontier, the firms that reduce this gap manage to increase their innovative capacity at the expense of imitation. To summarise, when we studied firms’ absorptive capacity and their relative position to the technological frontier in tandem, we found that the two factors directly affected firms' ability to innovate or imitate. Key words: R&D sources, innovation and imitation strategies, absorptive capacity, technological frontier, ordered probit.
Resumo:
We characterize the capacity-achieving input covariance for multi-antenna channels known instantaneously at the receiver and in distribution at the transmitter. Our characterization, valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigenvalues. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable properties: universal applicability, robustness and rapid convergence. In addition, we identify channel structures for which an isotropic input achieves capacity.