962 resultados para Static voltage stability
Resumo:
Proper analysis for safe design of tailings earthen dam is necessary under static loading and more so under earthquake conditions to reduce damages of important geotechnical structure. This paper presents both static and seismic analyses of a typical section of tailings earthen dam constructed by downstream method and located at a site in eastern part India to store non-radioactive nuclear waste material. The entire analysis is performed using geotechnical softwares FLAC(3D) and TALREN 4. Results are obtained for various possible conditions of the reservoir to investigate the stability under both static and seismic loading condition using 1989 Loma Prieta earthquake acceleration-time history. FLAC(3D) analyses indicate the critical maximum displacement at crest of the proposed tailings dam section is 5.5 cm under the static loading but it increases to about 16.24 cm under seismic loading. The slope stability analyses provide the minimum value of factor of safety for seismic loading as 1.5 as compared to 2.31 for static loading. Amplification of base seismic acceleration is also observed. The liquefaction potential analysis in FLAC(3D) indicates considerable loss of shear strength in the tailings portion of the proposed earthen dam section with significantly high values of pore pressure ratio.
Resumo:
In a cyber physical system like vehicles number of signals to be communicated in a network system has an increasing trend. More and more mechanical and hydraulic parts are replaced by electronic control units and infotainment and multimedia applications has increased in vehicles. Safety critical hard real time messages and aperiodic messages communicated between electronic control units have been increased in recent times. Flexray is a high bandwidth protocol consisting of static segment for supporting hard real time messages and a dynamic segment for transmitting soft and non real time messages. In this paper, a method to obtain the stability region for the random arrival of messages in each electronic control units which is scheduled in the dynamic segment of Flexray protocol is presented. Number of mini slots available in the dynamic segment of Flexray restricts the arrival rate of tasks to the micro controllers or the number of micro controllers connected to the Flexray bus. Stability region of mathematical model of the system is compared with the Flexray protocol simulation results.
Resumo:
A power filter is necessary to connect the output of a power converter to the grid so as to reduce the harmonic distortion introduced in the line current and voltage by the power converter. Many a times, a transformer is also present before the point of common coupling. Magnetic components often constitute a significant part of the overall weight, size and cost of the grid interface scheme. So, a compact inexpensive design is desirable. A higher-order LCL-filter and a transformer are increasingly being considered for grid interconnection of the power converter. This study proposes a design method based on a three-winding transformer, that generates an integrated structure that behaves as an LCL-filter, with both the filter inductances and the transformer that are merged into a single electromagnetic component. The parameters of the transformer are derived analytically. It is shown that along with a filter capacitor, the transformer parameters provide the filtering action of an LCL-filter. A single-phase full-bridge power converter is operated as a static compensator for performance evaluation of the integrated filter transformer. A resonant integrator-based single-phase phase locked loop and stationary frame AC current controller are employed for grid frequency synchronisation and line current control, respectively.
Resumo:
Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The stability of a long circular tunnel in a cohesive frictional soil medium has been determined in the presence of horizontal pseudo-static seismic body forces. The tunnel is supported by means of lining and anchorage system which is assumed to exert uniform internal compressive normal pressure on its periphery. The upper bound finite element limit analysis has been performed to compute the magnitude of the internal compressive pressure required to support the tunnel. The results have been presented in terms of normalized compressive normal stress, defined in terms of sigma(i)/c; where sigma(i) is the magnitude of the compressive normal pressure on the periphery of the tunnel and c refers to soil cohesion. The variation of sigma(i)/c with horizontal earthquake acceleration coefficient (alpha(h)) has been established for different combinations of H/D, gamma D/c and phi where (i) H and D refers to tunnel cover and diameter, respectively, and (ii) gamma and phi correspond to unit weight and internal friction angle of soil mass, respectively. Nodal velocity patterns have also been plotted for assessing the zones of significant plastic deformation. The analysis clearly reveals that an increase in the magnitude of the earthquake acceleration leads to a significant increment in the magnitude of internal compressive pressure. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper demonstrates light-load instability in open-loop induction motor drives on account of inverter dead-time. The dynamic equations of an inverter fed induction motor, incorporating the effect of dead-time, are considered. A procedure to derive the small-signal model of the motor, including the effect of inverter dead-time, is presented. Further, stability analysis is carried out on a 100-kW, 415V, 3-phase induction motor considering no-load. For voltage to frequency (i.e. V/f) ratios between 0.5 and 1 pu, the analysis brings out regions of instability on the V-f plane, in the frequency range between 5Hz and 20Hz. Simulation and experimental results show sub-harmonic oscillations in the motor current in this region, confirming instability as predicted by the analysis.
Resumo:
A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLiLi1/3Mn2/3]O-2.(1 - x) LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (LiLi1/3Mn2/3]O-2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 degrees C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g(-1) at C/10 rate as compared to 180 mA h g(-1) for LiNi0.5Mn1.5O4 in the potential range of 2.4-4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 degrees C. Also, the integrated cathode material can exhibit 105 mA h g(-1) at 2 C rate as compared to 78 mA h g(-1) for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.
Resumo:
This paper demonstrates light-load instability in a 100-kW open-loop induction motor drive on account of inverter deadtime. An improved small-signal model of an inverter-fed induction motor is proposed. This improved model is derived by linearizing the nonlinear dynamic equations of the motor, which include the inverter deadtime effect. Stability analysis is carried out on the 100-kW415-V three-phase induction motor considering no load. The analysis brings out the region of instability of this motor drive on the voltage versus frequency (V-f) plane. This region of light-load instability is found to expand with increase in inverter deadtime. Subharmonic oscillations of significant amplitude are observed in the steady-state simulated and measured current waveforms, at numerous operating points in the unstable region predicted, confirming the validity of the stability analysis. Furthermore, simulation and experimental results demonstrate that the proposed model is more accurate than an existing small-signal model in predicting the region of instability.
Resumo:
Exploring future cathode materials for sodium-ion batteries, alluaudite class of Na2Fe2II(SO4)(3) has been recently unveiled as a 3.8 V positive insertion candidate (Barpanda et al. Nat. Commun. 2014, 5, 4358). It forms an Fe-based polyanionic compound delivering the highest Fe-redox potential along with excellent rate kinetics and reversibility. However, like all known SO4-based insertion materials, its synthesis is cumbersome that warrants careful processing avoiding any aqueous exposure. Here, an alternate low temperature ionothermal synthesis has been described to produce the alluaudite Na2+2xFe2-xII(SO4)(3). It marks the first demonstration of solvothermal synthesis of alluaudite Na2+2xM2-xII(SO4)(3) (M = 3d metals) family of cathodes. Unlike classical solid-state route, this solvothermal route favors sustainable synthesis of homogeneous nanostructured alluaudite products at only 300 degrees C, the lowest temperature value until date. The current work reports the synthetic aspects of pristine and modified ionothermal synthesis of Na2+2xFe2-xII(SO4)(3) having tunable size (300 nm similar to 5 mu m) and morphology. It shows antiferromagnetic ordering below 12 K. A reversible capacity in excess of 80 mAh/g was obtained with good rate kinetics and cycling stability over 50 cycles. Using a synergistic approach combining experimental and ab initio DFT analysis, the structural, magnetic, electronic, and electrochemical properties and the structural limitation to extract full capacity have been described.
Resumo:
Graphite-flake reinforced Cu47Ti34Zr11 Ni-8 bulk metallic glass matrix composite was fabricated by water-cooled copper mould cast. Most of the graphite flakes still keep unreacted and distribute uniformly in the amorphous matrix except that some reactive wetting occurs by the formation of TiC particles around the flakes. It reveals that the presence of graphite flakes does not affect the onset of the glass transition temperature, crystallization reaction and liquidus of the metallic glass. The resulting material shows obvious serrated flow and higher fracture strength under room temperature compressive load, comparing with the monolithic bulk metallic glass (BMG). Three types of interaction between the shear bands and graphite flakes, namely, shear band termination, shear bands branching and new shear bands formation near the graphite flakes can be observed by quasi-static uniaxial compression test and bonded interface technique through Vickers indentation.
Resumo:
In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.
Resumo:
electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.
Resumo:
The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beamsolutions of the loads with different distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation offers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length offers such information. But to compute the functional it is necessary to know the beam deformation. So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The effects of dielectric layer thickness and electrostatic voltage on the cantilever beamstiction are studied.The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
This work is motivated by experimental observations that cells on stretched substrate exhibit different responses to static and dynamic loads. A model of focal adhesion that can consider the mechanics of stress fiber, adhesion bonds, and substrate was developed at the molecular level by treating the focal adhesion as an adhesion cluster. The stability of the cluster under dynamic load was studied by applying cyclic external strain on the substrate. We show that a threshold value of external strain amplitude exists beyond which the adhesion cluster disrupts quickly. In addition, our results show that the adhesion cluster is prone to losing stability under high-frequency loading, because the receptors and ligands cannot get enough contact time to form bonds due to the high-speed deformation of the substrate. At the same time, the viscoelastic stress fiber becomes rigid at high frequency, which leads to significant deformation of the bonds. Furthermore, we find that the stiffness and relaxation time of stress fibers play important roles in the stability of the adhesion cluster. The essence of this work is to connect the dynamics of the adhesion bonds (molecular level) with the cell's behavior during reorientation (cell level) through the mechanics of stress fiber. The predictions of the cluster model are consistent with experimental observations.