950 resultados para Stat1 Serine Phosphorylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Diabetes mellitus (DM) is a risk factor for erectile dysfunction (ED). Although type 2 DM is responsible for 90-95% diabetes cases, type 1 DM experimental models are commonly used to study diabetes-associated ED. Aim. Goto-Kakizaki (GK) rat model is relevant to ED studies since the great majority of patients with type 2 diabetes display mild deficits in glucose-stimulated insulin secretion, insulin resistance, and hyperglycemia. We hypothesized that GK rats display ED which is associated with decreased nitric oxide (NO) bioavailability. Methods. Wistar and GK rats were used at 10 and 18 weeks of age. Changes in the ratio of intracavernosal pressure/mean arterial pressure (ICP/MAP) after electrical stimulation of cavernosal nerve were determined in vivo. Cavernosal contractility was induced by electrical field stimulation (EFS) and phenylephrine (PE). In addition, nonadrenergic-noncholinergic (NANC)- and sodium nitroprusside (SNP)-induced relaxation were determined. Cavernosal neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) mRNA and protein expression were also measured. Main Outcome Measure. GK diabetic rats display ED associated with decreased cavernosal expression of eNOS protein. Results. GK rats at 10 and 18 weeks demonstrated impaired erectile function represented by decreased ICP/MAP responses. Ten-week-old GK animals displayed increased PE responses and no changes in EFS-induced contraction. Conversely, contractile responses to EFS and PE were decreased in cavernosal tissue from GK rats at 18 weeks of age. Moreover, GK rats at 18 weeks of age displayed increased NANC-mediated relaxation, but not to SNP. In addition, ED was associated with decreased eNOS protein expression at both ages. Conclusion. Although GK rats display ED, they exhibit changes in cavernosal reactivity that would facilitate erectile responses. These results are in contrast to those described in other experimental diabetes models. This may be due to compensatory mechanisms in cavernosal tissue to overcome restricted pre-penile arterial blood supply or impaired veno-occlusive mechanisms. Carneiro FS, Giachini FRC, Carneiro ZN, Lima VV, Ergul A, Webb RC, and Tostes RC. Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. J Sex Med 2010;7:3620-3634.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been previously demonstrated that aspartic, serine, metallo and cysteine proteases bind to their inhibitors and substrate analogues in a single conformation, the saw-tooth or extended beta-strand. Consequently a generic approach to the development of protease inhibitors is the use of constraints that conformationally restrict putative inhibitor molecules to an extended form. In this way the inhibitor is pre-organized for binding to a protease and does not need to rearrange its structure. One constraining device that has proven to be effective for such pre-organization is macrocyclization. This article illustrates the general principle that macrocycles, especially those composed of 3-4 amino acids and usually 13-17 ring atoms, can effectively mimic the extended conformation of short peptide sequences. Such structure-stabilising macrocycles are stable to degradation by proteases, valuable components of potent protease inhibitors, and in many cases they are also bioavailable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1·Mre11·Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and UV; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after UV. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after UV) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530). However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1. Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells from patients with the genetic disorder ataxia-telangiectasia (A-T) are hypersensitive to ionizing radiation and radiomimetic agents, both of which generate reactive oxygen species capable of causing oxidative damage to DNA and other macromolecules. We describe in A-T cells constitutive activation of pathways that normally respond to genotoxic stress, Basal levels of p53 and p21(WAF1/CIP1), phosphorylation on serine 15 of p53, and the Tyr15-phosphorylated form of cdc2 are chronically elevated in these cells. Treatment of A-T cells with the antioxidant alpha -lipoic acid significantly reduced the levels of these proteins, pointing to the involvement of reactive oxygen species in their chronic activation. These findings suggest that the absence of functional ATM results in a mild but continuous state of oxidative stress, which could account for several features of the pleiotropic phenotype of A-T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have provided evidence that breast cancer susceptibility gene products (Brca1 and Brca2) suppress cancer, at least in part, by participating in DNA damage signaling and DNA repair. Brca1 is hyperphosphorylated in response to DNA damage and co-localizes with Rad51, a protein involved in homologous-recombination, and Nbs1.Mre11.Rad50, a complex required for both homologous-recombination and nonhomologous end joining repair of damaged DNA. Here, we report that there is a qualitative difference in the phosphorylation states of Brca1 between ionizing radiation (IR) and UV radiation. Brca1 is phosphorylated at Ser-1423 and Ser-1524 after IR and W; however, Ser-1387 is specifically phosphorylated after IR, and Ser-1457 is predominantly phosphorylated after W. These results suggest that different types of DNA-damaging agents might signal to Brca1 in different ways. We also provide evidence that the rapid phosphorylation of Brca1 at Ser-1423 and Ser-1524 after IR (but not after W) is largely ataxia telangiectasia mutated (ATM) kinase-dependent. The overexpression of catalytically inactive ATM and Rad3 related (ATR) kinase inhibited the UV-induced phosphorylation of Brca1 at these sites, indicating that ATR controls Brca1 phosphorylation in vivo after the exposure of cells to UV light. Moreover, ATR associates with Brca1; ATR and Brca1 foci co-localize both in cells synchronized in S phase and after exposure of cells to DNA-damaging agents. ATR can itself phosphorylate the region of Brca1 phosphorylated by ATM (Ser-Gln cluster in the C terminus of Brca1, amino acids 1241-1530), However, there are additional uncharacterized ATR phosphorylation site(s) between residues 521 and 757 of Brca1, Taken together, our results support a model in which ATM and ATR act in parallel but somewhat overlapping pathways of DNA damage signaling but respond primarily to different types of DNA lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NES1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G2/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G2 checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G2/M checkpoint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento, Biologia (Biologia Celular e Molecular), 18 de Novembro de 2013, Universidade dos Açores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of molecular mechanisms of response, repair and adaptation, many of which are greatly conserved across nature, gives to the cell with the plasticity it requires to adjust to its ever-changing environment, a homeostatic event that is termed the stress response. In the budding yeast Saccharomyces cerevisiae there is a particular family of transcription factors, the Yap family, which has been shown to have a relevant role in yeast adaptation to several stress conditions. In particular, Yap1 is the major regulator of the transcriptional response to oxidative stress and Yap2 and Yap8 play important roles upon cadmium and arsenic exposure, respectively.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es bien conocido que los fosfolípidos son un conjunto de moléculas capaces de funcionar como reguladores en diversos procesos celulares. Al respecto, este proyecto tiene como objetivo dilucidar la participación de los mismos, en particular ácido fosfatídico (PA) y diacilglicerol pirofosfato (DGPP) durante el efecto antagónico de ABA en la germinación y como reguladores de la respuesta al estrés salino en la plántula. Se sabe que las plantas responden de forma rápida y adecuada a una situación de estrés modificando el patrón de fosfolípidos de sus membranas, lo cual lleva a un cambio global en las actividad de lípido quinasas, fosfatasas y a la expresión/represión de genes particulares. El desarrollo de la propuesta permitiría responder dos cuestiones básicas: conocer la relación entre fosfolípidos y ABA e indagar su participación durante la señal de estrés. La relevancia de la propuesta radica en la necesidad de ampliar el conocimiento sobre una de las causas mas importantes "estrés salino" que afecta la germinación de la semilla y luego el crecimiento y desarrollo de la plántula. En principio se evaluara a nivel morfológico, bioquímico y molecular el efecto de ABA y de fosfolípidos. Se pretende indagar sobre cambios a nivel de vacuolización en protoplastos aislados, actividad de enzimas relacionadas, pH intracelular, nivel de fosfolípidos y enzimas implicadas en su metabolismo y también efectos sobre la expresión génica. Por otro lado, se analizara los niveles de fosfolípidos y enzimas relacionadas con su metabolismo en raíces y coleoptilos de semillas que germinaron bajo condiciones de estrés. Asimismo, se identificaran los cambios morfológicos provocados por el estrés en la longitud de coleóptilos y raíces. Por ultimo como indicador de una respuesta al estrés se evaluara los cambios en los niveles de prolina. La importancia del proyecto es determinar el papel que desempeñan PA y DGPP en la germinación y durante la respuesta al estrés.