998 resultados para Stability of airplanes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability analysis of residual soil slopes are now increasingly being performed with the incorporation of the matric suction component of strength. The matric suction (u(a)-u(w)) component of shear strength is known as apparent cohesion. The relation between matric suction and apparent cohesion (c(app)) may be linear or non-linear. The impact of type of apparent strength versus matric suction relationship on the stability of an unsaturated residual soil slope is examined in this study. Results of the study showed that the factor of safety values were unaffected by the nature of the strength versus matric suction relationship for the residual soil slope examined. This was so as contribution from the effective stress- strength component to the factor of safety predominated over the contribution made by the apparent strength component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anodized nanotubular and nanoporous zirconia membranes are of interest for applications involving elevated temperatures in excess of 400 degrees C, such as templates for the synthesis of nanostructures, catalyst supports, fuel cells and sensors. Thermal stability is thus an important attribute. The study described in this paper shows that the as-anodized nanoporous membranes can withstand more adverse temperature-time combinations than nanotubular membranes. Chemical treatment of the nanoporous membranes was found to further enhance their thermal stability. The net result is an enhancement in the limiting temperature from 500 degrees C for nanotubular membranes to 1000 degrees C for the chemically treated nanoporous membranes. The reasons for membrane degradation on thermal exposure and the mechanism responsible for retarding the same are discussed within the framework of the theory of thermal grooving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) in bulk form offer outstanding structural and functional properties, and are shown to remain viscoelastic over a wide temperature range (77-1273 K) under inert conditions. We examine the quasi-static and dynamic compressive mechanical response of these cellular CNT materials in ambient air up to a temperature of 773 K. In uniaxial quasi-static compression, several displacement bursts are noted at large strains. These are results of the slippage and zipping of the CNT, and lead to significant mechanical energy absorption. Results of the dynamic mechanical analysis experiments show no degradation in storage modulus and loss coefficient for up to 20 h at 673 K. Hence, these stable cellular CNT structures can be utilized up to a maximum temperature of 673 K in air, which is much higher than the best polymers. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of a long unsupported circular tunnel (opening) in a cohesive frictional soil has been assessed with the inclusion of pseudo-static horizontal earthquake body forces. The analysis has been performed under plane strain conditions by using upper bound finite element limit analysis in combination with a linear optimization procedure. The results have been presented in the form of a non-dimensional stability number (gamma H-max/c); where H = tunnel cover, c refers to soil cohesion and gamma(max) is the maximum unit weight of soil mass which the tunnel can support without collapse. The results have been obtained for various values of H/D (D = diameter of the tunnel), internal friction angle (phi) of soil, and the horizontal earthquake acceleration coefficient (alpha(h)). The computations reveal that the values of the stability numbers (i) decrease quite significantly with an increase in alpha(h), and (ii) become continuously higher for greater values of H/D and phi. As expected, the failure zones around the periphery of the tunnel becomes always asymmetrical with an inclusion of horizontal seismic body forces. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg2+, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg2+ accounts for 1/3 and all of the free energy gain in 50% and pure MgCl2 solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl2 compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg2+. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg2+ may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE The ratio of the measured abundance of 13C18O bonding CO2 to its stochastic abundance, prescribed by the delta 13C and delta 18O values from a carbonate mineral, is sensitive to its growth temperature. Recently, clumped-isotope thermometry, which uses this ratio, has been adopted as a new tool to elucidate paleotemperatures quantitatively. METHODS Clumped isotopes in CO2 were measured with a small-sector isotope ratio mass spectrometer. CO2 samples digested from several kinds of calcium carbonates by phosphoric acid at 25 degrees C were purified using both cryogenic and gas-chromatographic separations, and their isotopic composition (delta 13C, delta 18O, Delta 47, Delta 48 and Delta 49 values) were then determined using a dual-inlet Delta XP mass spectrometer. RESULTS The internal precisions of the single gas Delta 47 measurements were 0.005 and 0.02 parts per thousand (1 SE) for the optimum and the routine analytical conditions, respectively, which are comparable with those obtained using a MAT 253 mass spectrometer. The long-term variations in the Delta 47 values for the in-house working standard and the heated CO2 gases since 2007 were close to the routine, single gas uncertainty while showing seasonal-like periodicities with a decreasing trend. Unlike the MAT 253, the Delta XP did not show any significant relationship between the Delta 47 and delta 47 values. CONCLUSIONS The Delta XP gave results that were approximately as precise as those of the MAT 253 for clumped-isotope analysis. The temporal stability of the Delta XP seemed to be lower, although an advantage of the Delta XP was that no dependency of delta 47 on Delta 47 was found. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we report the results of a study aimed at examining stability of adult emergence and activity/rest rhythms under seminatural conditions (henceforth SN), in four large outbred fruit fly Drosophila melanogaster populations, selected for emergence in a narrow window of time under laboratory (henceforth LAB) light/dark (LD) cycles. When assessed under LAB, selected flies display enhanced stability in terms of higher amplitude, synchrony and accuracy in emergence and activity rhythms compared to controls. The present study was conducted to assess whether such differences in stability between selected and control populations, persist under SN where several gradually changing time-cues are present in their strongest form. The study revealed that under SN, emergence waveform of selected flies was modified, with even more enhanced peak and narrower gate-width compared to those observed in the LAB and compared to control populations in SN. Furthermore, flies from selected populations continued to exhibit enhanced synchrony and accuracy in their emergence and activity rhythms under SN compared to controls. Further analysis of zeitgeber effects revealed that enhanced stability in the rhythmicity of selected flies under SN was primarily due to increased sensitivity to light because emergence and activity rhythms of selected flies were as stable as controls under temperature cycles. These results thus suggest that stability of circadian rhythms in fruit flies D. melanogaster, which evolved as a consequence of selection for emergence in a narrow window of time under weak zeitgeber condition of LAB, persists robustly in the face of day-to-day variations in cycling environmental factors of nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of a bioreactor landfill slope is influenced by the quantity and method of leachate recirculation as well as on the degree of decomposition. Other factors include properties variation of waste material and geometrical configurations, i.e., height and slope of landfills. Conventionally, the stability of slopes is evaluated using factor of safety approach, in which the variability in the engineering properties of MSW is not considered directly and stability issues are resolved from past experiences and good engineering judgments. On the other hand, probabilistic approach considers variability in mathematical framework and provides stability in a rational manner that helps in decision making. The objective of the present study is to perform a parametric study on the stability of a bioreactor landfill slope in probabilistic framework considering important influencing factors, such as, variation in MSW properties, amount of leachate recirculation, and age of degradation, in a systematic manner. The results are discussed in the light of existing relevant regulations, design and operation issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoassisted electrolysis of water is considered as an effective way of storing solar energy in the form of hydrogen fuel. This overall reaction involves the oxidation of water to oxygen at the anode and the reduction of protons to hydrogen at the cathode. Cobalt-phosphate-based catalyst (Co-Pi) is a potentially useful material for oxygen evolution reaction. In the present study, electrochemical deposition of Co-Pi catalyst is carried out on Au-coated quartz crystal from 0.1 M phosphate buffer (pH 7) containing 0.5 mM Co2+ ion, along with the simultaneous measurement of mass changes at the electrode surface. Cyclic voltammograms and mass variations are recorded during the course of deposition. A current peak is observed at 0.92 V vs Ag/AgCl, 3 M KCl corresponding to oxidation of Co2+ ion. The mass of the electrode starts increasing at this potential, suggesting the deposition of a Co(III)-based insoluble product on the electrode surface. The stability of the catalyst is also studied at several potentials in both buffered and nonbuffered electrolyte by monitoring the real-time mass variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of crystallite size and clustering in influencing the stability of the structures of a large tetragonality ferroelectric system 0.6BiFeO(3)-0.4PbTiO(3) was investigated. The system exhibits cubic phase for a crystallite size similar to 25 nm, three times larger than the critical size reported for one of its end member PbTiO3. With increased degree of clustering for the same average crystallite size, partial stabilization of the ferroelectric tetragonal phase takes place. The results suggest that clustering helps in reducing the depolarization energy without the need for increasing the crystallite size of free particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.