911 resultados para Stability analysis
Resumo:
This article contains a review of modal stability theory. It covers local stability analysis of parallel flows including temporal stability, spatial stability, phase velocity, group velocity, spatio-temporal stability, the linearized Navier-Stokes equations, the Orr-Sommerfeld equation, the Rayleigh equation, the Briggs-Bers criterion, Poiseuille flow, free shear flows, and secondary modal instability. It also covers the parabolized stability equation (PSE), temporal and spatial biglobal theory, 2D eigenvalue problems, 3D eigenvalue problems, spectral collocation methods, and other numerical solution methods. Computer codes are provided for tutorials described in the article. These tutorials cover the main topics of the article and can be adapted to form the basis of research codes. Copyright © 2014 by ASME.
Resumo:
A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.
Resumo:
Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.
Resumo:
We present a mathematical analysis of the asymptotic preserving scheme proposed in [M. Lemou and L. Mieussens, SIAM J. Sci. Comput., 31 (2008), pp. 334-368] for linear transport equations in kinetic and diffusive regimes. We prove that the scheme is uniformly stable and accurate with respect to the mean free path of the particles. This property is satisfied under an explicitly given CFL condition. This condition tends to a parabolic CFL condition for small mean free paths and is close to a convection CFL condition for large mean free paths. Our analysis is based on very simple energy estimates. © 2010 Society for Industrial and Applied Mathematics.
Resumo:
An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].
Resumo:
Theoretical and numerical investigations are carried out for the amplitude modulation of dust-ion acoustic waves (DIAW) propagating in an unmagnetized weakly coupled collisionless fully ionized plasma consisting of isothermal electrons, warm ions and charged dust grains. Modulation oblique (by an angle theta) to the carrier wave propagation direction is considered. The stability analysis, based on a nonlinear Schrodinger-type equation (NLSE), exhibits a sensitivity of the instability region to the modulation angle theta, the dust concentration and the ion temperature. It is found that the ion temperature may strongly modify the wave's stability profile, in qualitative agreement with previous results, obtained for an electron-ion plasma. The effect of the ion temperature on the formation of DIAW envelope excitations (envelope solitons) is also discussed.
Resumo:
In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.
Resumo:
The rapid growth of wind generation in many European countries is pushing power systems into
uncharted territory. As additional wind generators are installed, the changing generation mix may
impact on power system stability. This paper adopts the New England 39 bus system as a test
system for transient stability analysis. Thermal generator models are based on a likely future plant
mix for existing systems, while varying capacities of fixed-speed induction generators (FSIG) and
doubly-fed induction generators (DFIG) are considered. The main emphasis here has been placed
on the impact of wind technology mix on inter-area oscillations following transient grid
disturbances. In addition, both rotor angle stability and transient voltage stability are examined, and
results are compared with current grid code requirements and standards. Results have shown that
FSIGs can reduce tie-line oscillations and improve damping following a transient disturbance, but
they also cause voltage stability and rotor angle stability problems at high wind penetrations. In
contrast, DFIGs can improve both voltage and rotor angle stability, but their power output
noticeably oscillates during disturbances.
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
The quantitative effects of uniform strain and background rotation on the stability of a strip of constant vorticity (a simple shear layer) are examined. The thickness of the strip decreases in time under the strain, so it is necessary to formulate the linear stability analysis for a time-dependent basic flow. The results show that even a strain rate γ (scaled with the vorticity of the strip) as small as 0.25 suppresses the conventional Rayleigh shear instability mechanism, in the sense that the r.m.s. wave steepness cannot amplify by more than a certain factor, and must eventually decay. For γ < 0.25 the amplification factor increases as γ decreases; however, it is only 3 when γ e 0.065. Numerical simulations confirm the predictions of linear theory at small steepness and predict a threshold value necessary for the formation of coherent vortices. The results help to explain the impression from numerous simulations of two-dimensional turbulence reported in the literature that filaments of vorticity infrequently roll up into vortices. The stabilization effect may be expected to extend to two- and three-dimensional quasi-geostrophic flows.
Resumo:
This paper considers the stability of explicit, implicit and Crank-Nicolson schemes for the one-dimensional heat equation on a staggered grid. Furthemore, we consider the cases when both explicit and implicit approximations of the boundary conditions arc employed. Why we choose to do this is clearly motivated and arises front solving fluid flow equations with free surfaces when the Reynolds number can be very small. in at least parts of the spatial domain. A comprehensive stability analysis is supplied: a novel result is the precise stability restriction on the Crank-Nicolson method when the boundary conditions are approximated explicitly, that is, at t =n delta t rather than t = (n + 1)delta t. The two-dimensional Navier-Stokes equations were then solved by a marker and cell approach for two simple problems that had analytic solutions. It was found that the stability results provided in this paper were qualitatively very similar. thereby providing insight as to why a Crank-Nicolson approximation of the momentum equations is only conditionally, stable. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper deals with hybrid method for transient stability analysis combining time domain simulation and a direct method. Nowadays, the step-by-step simulation is the best available tool for allowing the uses of detailed models and for providing reliable results. The main limitation of this approach involves the large time of computational simulations and the absence of stability margin. On the other hand, direct methods, that demand less CPU time, did not show ample reliability and applicability yet. The best way seems to be using hybrid solutions, in which a direct method is incorporated in a time domain simulation tool. This work has studied a direct method using the transient potential and kinetic energy of the critical machine only. In this paper the critical machine is identified by a fast and efficient method, and the proposal is new for using to get stability margins from hybrid approaches. Results from systems, like 16-machine, show stability indices to dynamic security assessment. © 2001 IEEE.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.