889 resultados para Stabilisation of filter
Resumo:
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
Resumo:
We propose a systematic method for the synthesis of arbitrary group delay responses by using all-pass structures of coupled optical cavities. Optimum structure parameters design, in terms of filter order and accuracy, are obtained.
Resumo:
Electronic commerce (e-commerce) has become an increasingly important initiative among organisations. The factors affecting adoption decisions have been well-documented, but there is a paucity of empirical studies that examine the adoption of e-commerce in developing economies in the Arab world. The aim of this study is to provide insights into the salient e-commerce adoption issues by focusing on Saudi Arabian businesses. Based on the Technology-Organisational-Environmental framework, an integrated research model was developed that explains the relative influence of 19 known determinants. A measurement scale was developed from prior empirical studies and revised based on feedback from the pilot study. Non-interactive adoption, interactive adoption and stabilisation of e-commerce adoption were empirically investigated using survey data collected from Saudi manufacturing and service companies. Multiple discriminant function analysis (MDFA) was used to analyse the data and research hypotheses. The analysis demonstrates that (1) regarding the non-interactive adoption of e-commerce, IT readiness, management team support, learning orientation, strategic orientation, pressure from business partner, regulatory and legal environment, technology consultants‘ participation and economic downturn are the most important factors, (2) when e-commerce interactive adoption is investigated, IT readiness, management team support, regulatory environment and technology consultants‘ participation emerge as the strongest drivers, (3) pressure from customers may not have much effect on the non-interactive adoption of e-commerce by companies, but does significantly influence the stabilisation of e-commerce use by firms, and (4) Saudi Arabia has a strong ICT infrastructure for supporting e-commerce practices. Taken together, these findings on the multi-dimensionality of e-commerce adoption show that non-interactive adoption, interactive adoption and stabilisation of e-commerce are not only different measures of e-commerce adoption, but also have different determinants. Findings from this study may be valuable for both policy and practice as it can offer a substantial understanding of the factors that enhance the widespread use of B2B e-commerce. Also, the integrated model provides a more comprehensive explanation of e-commerce adoption in organisations and could serve as a foundation for future research on information systems.
Resumo:
We propose a systematic method for the synthesis of arbitrary group delay responses by using allpass structures of coupled optical cavities. Optimum structure parameters design, in terms of filter order and accuracy, are obtained. © 2012 OSA.
Resumo:
Introduction: Diabetic nephropathy (DN) is the leading cause of chronic kidney failure, however the mechanisms underlying the characteristic expansion of the extracellular matrix (ECM) in diabetic kidneys remain controversial and unclear. In non-diabetic kidney scarring the protein crosslinking enzyme tissue transglutaminase (tTg) has been implicated in this process by the formation of increased ε-(γ-glutamyl)lysine bonds between ECM components in both experimental and human disease. Studies in db/db diabetic mice and in streptozotocin-treated rats have suggested a similar mechanism, although the relevance of this to human disease has not been addressed. Methods: We have undertaken a retrospective analysis of renal biopsies from 16 DN patients with type 2 diabetes mellitus using an immunohistochemical and immunofl uorescence approach, with tTg and ε-(γ-glutamyl)lysine crosslink quantified by confocal microscopy. Results: Immunofl uorescent analysis of human biopsies (confocal microscopy) showed increases in levels of tTg (+1,266%, p <0.001) and ε-(γ-glutamyl)lysine (+486%, p <0.001) in kidneys with DN compared to normal. Changes were predominantly in the extracellular periglomerular and peritubular areas. tTg staining correlated with e-(?-glutamyl)lysine (r = 0.615, p <0.01) and renal scarring (Masson's trichrome, r = 0.728, p <0.001). Significant changes in e-(?-glutamyl)lysine were also noted intracellularly in some (=5%) tubular epithelial cells. This is consistent with cells undergoing a novel transglutaminase-mediated cell death process in response to Ca influx and subsequent activation of intracellular tTg. Conclusion: Changes in tTg and ε-(γ- glutamyl)lysine occur in human DN. Cellular export of tTg may therefore be a factor in the perpetuation of DN by crosslinking and stabilisation of the ECM, while intracellular activation may lead to cell death contributing towards tubular atrophy. Copyright © 2004 S. Karger AG, Basel.
Resumo:
The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.
Resumo:
A family of tungstated zirconia solid acid catalysts were synthesised via wet impregnation and subsequent thermochemical processing for the transformation of glucose to 5-hydroxymethylfurfural (HMF). Acid strength increased with tungsten loading and calcination temperature, associated with stabilisation of tetragonal zirconia. High tungsten dispersions of between 2 and 7 W atoms·nm−2 were obtained in all cases, equating to sub-monolayer coverages. Glucose isomerisation and subsequent dehydration via fructose to HMF increased with W loading and calcination temperature up to 600 °C, indicating that glucose conversion to fructose was favoured over weak Lewis acid and/or base sites associated with the zirconia support, while fructose dehydration and HMF formation was favoured over Brönsted acidic WOx clusters. Aqueous phase reforming of steam exploded rice straw hydrolysate and condensate was explored heterogeneously for the first time over a 10 wt% WZ catalyst, resulting in excellent HMF yields as high as 15% under mild reaction conditions.
Resumo:
Background
It is unknown whether a conservative approach to fluid administration or deresuscitation (active removal of fluid using diuretics or renal replacement therapy) is beneficial following haemodynamic stabilisation of critically ill patients.
Purpose
To evaluate the efficacy and safety of conservative or deresuscitative fluid strategies in adults and children with acute respiratory distress syndrome (ARDS), sepsis or systemic inflammatory response syndrome (SIRS) in the post-resuscitation phase of critical illness.
Methods
We searched Medline, EMBASE and the Cochrane central register of controlled trials from 1980 to June 2016, and manually reviewed relevant conference proceedings from 2009 to the present. Two reviewers independently assessed search results for inclusion and undertook data extraction and quality appraisal. We included randomised trials comparing fluid regimens with differing fluid balances between groups, and observational studies investigating the relationship between fluid balance and clinical outcomes.
Results
Forty-nine studies met the inclusion criteria. Marked clinical heterogeneity was evident. In a meta-analysis of 11 randomised trials (2051 patients) using a random-effects model, we found no significant difference in mortality with conservative or deresuscitative strategies compared with a liberal strategy or usual care [pooled risk ratio (RR) 0.92, 95 % confidence interval (CI) 0.82–1.02, I2 = 0 %]. A conservative or deresuscitative strategy resulted in increased ventilator-free days (mean difference 1.82 days, 95 % CI 0.53–3.10, I2 = 9 %) and reduced length of ICU stay (mean difference −1.88 days, 95 % CI −0.12 to −3.64, I2 = 75 %) compared with a liberal strategy or standard care.
Conclusions
In adults and children with ARDS, sepsis or SIRS, a conservative or deresuscitative fluid strategy results in an increased number of ventilator-free days and a decreased length of ICU stay compared with a liberal strategy or standard care. The effect on mortality remains uncertain. Large randomised trials are needed to determine optimal fluid strategies in critical illness.
Resumo:
Carbon capture and storage (CCS) in the oil and water industries is becoming common and a significant consumer of energy typically requiring 150–450 °C and or several hundred bar pressure [1] particularly in geological deposition. A biological carbon capture and conversion has been considered in conventional anaerobic digestion processes. The process has been utilised in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with complimentary increase of 30% in yield of methane, while the process was overall endothermic. Total consumption of energy (≈0.33 MJ l−1) was estimated for the carbonate solubility (0.1 mol l−1) in batched BCCU. This has a major influence on microbial composition in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the interactions between operating parameters and the mixed microbial culture.
Resumo:
Suppressor of cytokine signalling 3 (SOCS3) is a potent inhibitor of the mitogenic, migratory and pro-inflammatory pathways responsible for the development of neointimal hyperplasia (NIH), a key contributor to the failure of vascular reconstructive procedures. However, the protein levels of SOCS3, and therefore its potential to reduce NIH, is limited by its ubiquitylation and high turnover by the proteasome. I hypothesised that stabilisation of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. Consequently, the aim of this PhD was to identify the mechanisms promoting the rapid turnover of SOCS3. Initial experiments involved the identification of residues involved in regulating the turnover of SOCS3 at the proteasome. I assessed the ubiquitylation status of a panel of FLAG tagged SOCS3 truncation mutants and identified a C-terminal 44 amino acid region required for SOCS3 ubiquitylation. This region localised to the SOCS box which is involved in binding Elongin B/C and the formation of a functional E3 ubiquitin ligase complex. However, the single lysine residue at position 173, located within this 44 amino acid region, was not required for ubiquitylation. Moreover, Emetine chase assays revealed that loss of either Lys173 or Lys6 (as documented in the literature) had no significant effect on SOCS3 stability 8 hrs post emetine treatment. As mutagenesis studies failed to identify key sites of ubiquitylation responsible for targeting SOCS3 to the proteasome, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate was employed. These data were searched for the presence of a Gly-Gly doublet (+114 Da mass shift) and revealed 8 distinct sites of ubiquitylation (Lys23, Lys28, Lys40, Lys85, Lys91, Lys173, Lys195, Lys206) on SOCS3 however Lys6 ubiquitylation was not detected. As multiple Lys residues were ubiquitylated, I hypothesised that only a Lys-less SOCS3, in which all 8 Lys residues were mutated to Arg, would be resistant to ubiquitylation. Compared to WT SOCS3, Lys-less SOCS3 was indeed found to be completely resistant to ubiquitylation, and significantly more stable than WT SOCS3. These changes occurred in the absence of any detrimental effect on the ability of Lys-less SOCS3 to interact with the Elongin B/C components required to generate a functional E3 ligase complex. In addition, both WT and Lys-less SOCS3 were equally capable of inhibiting cytokine-stimulated STAT3 phosphorylation upon co-expression with a chimeric EpoR-gp130 receptor. To assess whether SOCS3 auto-ubiquitylates I generated an L189A SOCS3 mutant that could no longer bind the Elongins and therefore form the E3 ligase complex required for ubiquitylation. A denaturing IP to assess the ubiquitylation status of this mutant was performed and revealed that, despite an inability to bind the Elongins, the L189A mutant was poly-ubiquitylated similar to WT SOCS3. Together these data suggested that SOCS3 does not auto-ubiquitylate and that a separate E3 ligase must regulate SOCS3 ubiquitylation. This study sought to identify the E3 ligase and deubiquitylating (DUB) enzymes controlling the ubiquitylation of SOCS3. Our initial strategy was to develop a tool to screen an E3 ligase/DUB library, using an siARRAY, to sequentially knockdown all known E3 ligases in the presence of a SOCS3-luciferase fusion protein or endogenous SOCS3 in a high content imaging screening platform. However, due to a poor assay window (<2) and non-specific immunoreactivity of SOCS3 antibodies available, these methods were deemed unsuitable for screening purposes. In the absence of a suitable tool to screen the si-ARRAY, LC-MS-MS analysis of a SOCS3 co-immunoprecipitate (co-IP) was investigated. I performed a SOCS3 under conditions which preserved protein-protein interactions, with the aim of identifying novel E3 ligase and/or DUBs that could potentially interact with SOCS3. These data were searched for E3 ligase or DUB enzymes that may interact with SOCS3 in HEK293 cells and identified two promising candidates i) an E3 ligase known as HectD1 and ii) a DUB known as USP15. This thesis has demonstrated that in the presence of HectD1 overexpression, a slight increase in K63-linked polyubiquitylation of SOCS3 was observed. Mutagenesis also revealed that an N-terminal region of SOCS3 may act as a repressor of this interaction with HectD1. Additionally, USP15 was shown to reduce SOCS3 polyubiquitylation in a HEK293 overexpression system suggesting this may act as a DUB for SOCS3. The C-terminal region of SOCS3 was also shown to play a major role in the interaction with USP15. The original hypothesis of this thesis was that stabilisation of endogenous SOCS3 by inhibiting its ubiquitylation has the potential to limit vascular inflammation and NIH. Consistent with this hypothesis, immunohistochemistry visualisation of SOCS3, in human saphenous vein tissue derived from CABG patients, revealed that while SOCS3 was present throughout the media of these vessels the levels of SOCS3 within the neointima was reduced. Finally, preliminary data supporting the hypothesis that SOCS3 overexpression may limit the proliferation, but not migration, of human saphenous vein smooth muscle cells (HSVSMCs) is presented. It is expected that multiple E3 ligases and DUBs will contribute to the regulation of SOCS3 turnover. However, the identification of candidate E3 ligases or DUBs that play a significant role in SOCS3 turnover may facilitate the development of peptide disruptors or gene therapy targets to attenuate pathological SMC proliferation. A targeted approach, inhibiting the interaction between SOCS3 and identified E3 ligase, that controls the levels of SOCS3, would be expected to reduce the undesirable effects associated with global inhibition of the E3 ligase involved.
Resumo:
In this paper, two different high bandwidth converter control strategies are discussed. One of the strategies is for voltage control and the other is for current control. The converter, in each of the cases, is equipped with an output passive filter. For the voltage controller, the converter is equipped with an LC filter, while an output has an LCL filter for current controller. The important aspect that has been discussed the paper is to avoid computation of unnecessary references using high-pass filters in the feedback loop. The stability of the overall system, including the high-pass filters, has been analyzed. The choice of filter parameters is crucial for achieving desirable system performance. In this paper, the bandwidth of achievable performance is presented through frequency (Bode) plot of the system gains. It has been illustrated that the proposed controllers are capable of tracking fundamental frequency components along with low-order harmonic components. Extensive simulation results are presented to validate the control concepts presented in the paper.
Resumo:
The synthesizer has come a long way since wendy Carlos' 'Switched On Bach'. Unfortunately many would not realise it. Synthesizers are in most of the popular and commercial music we hear, and their development has followed the rapid development of computing technology, allowing sugnificant perfromance leaps every five years. In the last 10 years or so, the physical interface of synthesizers has changed little even while the sound generating hardware has raced ahead. The stabilisation of gestural controller, particularly keyboard-based controllers, has enabled tje synthesizer to establish itself as an expressive instrument and one worthy of the hours of practice required on any instrument to reach a high level of proficiency. It is now time for the instrumental study of synthesizer to be taken seriously by music educators across Australia, and I hope, through this paper, to shed some light on the path forward.
Resumo:
Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.
Resumo:
As solar hydrogen is a sustainable and environmental friendly energy carrier, it is considered to take the place of fossil fuels in the near future. Solar hydrogen can be generated by splitting of water under solar light illumination. In this study, the use of nanostructured hematite thin-film electrodes in photocatalytic water splitting was investigated. Hematite (á-Fe2O3) has a narrow band-gap of 2.2 eV, which is able to utilise approximately 40% of solar radiation. However, poor photoelectrochemical performance is observed for hematite due to low electrical conductivity and a high rate of electron-hole recombination. An extensive review of useful measures taken to overcoming the disadvantages of hematite so as to enhance its performance was presented including thin-film structure, nanostructuring, doping, etc. Since semiconductoring materials which exhibit an inverse opal structure are expected to have a high surface-volume ratio, unique optical characteristics and a shorter distance for photogenerated holes to travel to the electrode/electrolyte interface, inverse opals of hematite thin films deposited on FTO glass substrate were successfully prepared by doctor blading using PMMA as a template. However, due to the poor adhesion of the films, an acidic medium (i.e., 2 M HCl) was employed to significantly enhance the adhesion of the films, which completely destroyed the inverse opal structure. Therefore, undoped, Ti and Zn-doped hematite thin films deposied on FTO glass substrate without an inverse opal structure were prepared by doctor blading and spray pyrolysis and characterised using SEM, EDX, XRD, TGA, UV-Vis spectroscopy and photoelectrochemical measurements. Regarding the doped hematite thin films prepared by doctor blading, the photoelectrochemical activity of the hematite photoelectrodes was improved by incorporation of Ti, most likely owing to the increased electrical conductivity of the films, the stabilisation of oxygen vacancies by Ti4+ ions and the increased electric field of the space charge layer. A highest photoresponse was recorded in case of 2.5 at.% Ti which seemed to be an optimal concentration. The effect of doping content, thickness, and calcination temperature on the performance of the Ti-doped photoelectrodes was investigated. Also, the photoactivity of the 2.5 at.% Ti-doped samples was examined in two different types of electrochemical cells. Zn doping did not enhance the photoactivity of the hematite thin films though Zn seemed to enhance the hole transport due to the slow hole mobility of hematite which could not be overcome by the enhancement. The poor performance was also obtained for the Ti-doped samples prepared by spray pyrolysis, which appeared to be a result of introduction of impurities from the metallic parts of the spray gun in an acidic medium. Further characterisation of the thin-film electrodes is required to explain the mechanism by which enhanced performance was obtained for Ti-doped electrodes (doctor blading) and poor photoactivity for Zn and Ti-doped samples which were synthesised by doctor blading and spray pyrolysis, respectively. Ti-doped hematite thin films will be synthesised in another way, such as dip coating so as to maintain an inverse opal structure as well as well adhesion. Also, a comparative study of the films will be carried out.
Resumo:
Introduction: An observer, looking sideways from a moving vehicle, while wearing a neutral density filter over one eye, can have a distorted perception of speed, known as the Enright phenomenon. The purpose of this study was to determine how the Enright phenomenon influences driving behaviour. Methods: A geometric model of the Enright phenomenon was developed. Ten young, visually normal, participants (mean age = 25.4 years) were tested on a straight section of a closed driving circuit and instructed to look out of the right side of the vehicle and drive at either 40 Km/h or 60 Km/h under the following binocular viewing conditions: with a 0.9 ND filter over the left eye (leading eye); 0.9 ND filter over the right eye (trailing eye); 0.9 ND filters over both eyes, and with no filters over either eye. The order of filter conditions was randomised and the speed driven recorded for each condition. Results: Speed judgments did not differ significantly between the two baseline conditions (no filters and both eyes filtered) for either speed tested. For the baseline conditions, when subjects were asked to drive at 60 Km/h they matched this speed well (61 ± 10.2 Km/h) but drove significantly faster than requested (51.6 ± 9.4 Km/h) when asked to drive at 40 Km/h. Subjects significantly exceeded baseline speeds by 8.7± 5.0 Km/h, when the trailing eye was filtered and travelled slower than baseline speeds by 3.7± 4.6 Km/h when the leading eye was filtered. Conclusions: This is the first quantitative study demonstrating how the Enright effect can influence perceptions of driving speed, and demonstrates that monocular filtering of an eye can significantly impact driving speeds, albeit to a lesser extent than predicted by geometric models of the phenomenon.