978 resultados para Sports - Psycholohical aspects
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
Long-term inhalation studies in rodents have presented unequivocal evidence of experimental carcinogenicity of ethylene oxide, based on the formation of malignant tumors at multiple sites. However, despite a considerable body of epidemiological data only limited evidence has been obtained of its carcinogenicity in humans. Ethylene oxide is not only an important exogenous toxicant, but it is also formed from ethylene as a biological precursor. Ethylene is a normal body constituent; its endogenous formation is evidenced by exhalation in rats and in humans. Consequently, ethylene oxide must also be regarded as a physiological compound. The most abundant DNA adduct of ethylene oxide is 7-(2-hydroxyethyl)guanine (HOEtG). Open questions are the nature and role of tissue-specific factors in ethylene oxide carcinogenesis and the physiological and quantitative role of DNA repair mechanisms. The detection of remarkable individual differences in the susceptibility of humans has promoted research into genetic factors that influence the metabolism of ethylene oxide. With this background it appears that current PBPK models for trans-species extrapolation of ethylene oxide toxicity need to be refined further. For a cancer risk assessment at low levels of DNA damage, exposure-related adducts must be discussed in relation to background DNA damage as well as to inter- and intraindividual variability. In rats, subacute ethylene oxide exposures on the order of 1 ppm (1.83 mg/m3) cause DNA adduct levels (HOEtG) of the same magnitude as produced by endogenous ethylene oxide. Based on very recent studies the endogenous background levels of HOEtG in DNA of humans are comparable to those that are produced in rodents by repetitive exogenous ethylene oxide exposures of about 10 ppm (18.3 mg/m3). Experimentally, ethylene oxide has revealed only weak mutagenic effects in vivo, which are confined to higher doses. It has been concluded that long-term human occupational exposure to low airborne concentrations to ethylene oxide, at or below current occupational exposure limits of 1 ppm (1.83 mg/m3), would not produce unacceptable increased genotoxic risks. However, critical questions remain that need further discussions relating to the coherence of animal and human data of experimental data in vitro vs. in vivo and to species-specific dynamics of DNA lesions.
Resumo:
Occupational standards concerning the allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries at national levels. With the integration of the European Union, a need exists for establishing harmonized Occupational Exposure Limits. For analytical developments, it is apparent that methods for speciation or fractionation of carcinogenic metal compounds will be of increasing practical importance for standard setting. Criteria of applicability under field conditions, cost-effectiveness, and robustness are practical driving forces for new developments. When the European Union issued a list of 62 chemical substances with Occupational Exposure Limits in 2000, 25 substances received a 'skin' notation. The latter indicates that toxicologically significant amounts may be taken up via the skin. Similar notations exist on national levels. For such substances, monitoring concentrations in ambient air will not be sufficient; biological monitoring strategies will gain further importance in the medical surveillance of workers who are exposed to such compounds. Proceedings in establishing legal frameworks for a biological monitoring of chemical exposures within Europe are paralleled by scientific advances in this field. A new aspect is the possibility of a differential adduct monitoring, using blood proteins of different half-life or lifespan. This technique allows differentiation between long-term mean exposure to reactive chemicals and short-term episodes, for example, by accidental overexposure. For further analytical developments, the following issues have been addressed as being particularly important: New dose monitoring strategies, sensitive and reliable methods for detection of DNA adducts, cytogenetic parameters in biological monitoring, methods to monitor exposure to sensitizing chemicals, and parameters for individual susceptibilities to chemical toxicants.
Resumo:
Introduction This research evaluated the effect of tendinopathy on the cumulative transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods Nine adults with unilateral patellar tendinopathy (age 18.2±0.7 years, height 1.92±0.06 m and weight 76.8±6.8 kg) and ten healthy adults free of knee pain (age 17.8±0.8 years, height 1.83±0.05 m and weight 73.2±7.6 kg) underwent standardised sagittal sonograms (7.2–14 MHz linear–array transducer) of both patellar tendons immediately prior and following 45 repetitions of a double–leg decline–squat exercise performed against a resistance of 145% bodyweight. Tendon thickness was determined 5–mm and 25–mm distal to the patellar pole. Transverse Hencky strain was calculated as the natural log of the ratio of post– to pre–exercise tendon thickness and expressed as a percentage. Measures of tendon echogenicity were calculated within the superficial and deep aspects of each tendon site from gray–scale profiles. Intratendinous microvessels were evaluated using power Doppler ultrasound. Results The cumulative transverse strain response to exercise in symptomatic tendinopathy was significantly lower than that of asymptomatic and healthy tendon (P<.05). There was also a significant reduction (57%) in the area of microvascularity immediately following exercise (P=.05), which was positively correlated (r=0.93, P<.05) with VISA-P score. Conclusions This study is the first to show that patellar tendinopathy is associated with an altered morphological and mechanical response of the tendon to exercise, which is manifest by a reduction in cumulative transverse strain and microvascularity, when present. Research directed toward identifying factors that influence the acute microvascular and transverse strain response of the patellar tendon to exercise in the various stages of tendinopathy is warranted.