961 resultados para Spline Subdivision Schemes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag. In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future climate change projections are often derived from ensembles of simulations from multiple global circulation models using heuristic weighting schemes. This study provides a more rigorous justification for this by introducing a nested family of three simple analysis of variance frameworks. Statistical frameworks are essential in order to quantify the uncertainty associated with the estimate of the mean climate change response. The most general framework yields the “one model, one vote” weighting scheme often used in climate projection. However, a simpler additive framework is found to be preferable when the climate change response is not strongly model dependent. In such situations, the weighted multimodel mean may be interpreted as an estimate of the actual climate response, even in the presence of shared model biases. Statistical significance tests are derived to choose the most appropriate framework for specific multimodel ensemble data. The framework assumptions are explicit and can be checked using simple tests and graphical techniques. The frameworks can be used to test for evidence of nonzero climate response and to construct confidence intervals for the size of the response. The methodology is illustrated by application to North Atlantic storm track data from the Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble. Despite large variations in the historical storm tracks, the cyclone frequency climate change response is not found to be model dependent over most of the region. This gives high confidence in the response estimates. Statistically significant decreases in cyclone frequency are found on the flanks of the North Atlantic storm track and in the Mediterranean basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.