876 resultados para Spinal-cord Injuries


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sympathetic preganglionic neurons exhibit segment-specific projections. Preganglionic neurons located in rostral spinal segments project rostrally within the sympathetic chain, those located in caudal spinal segments project caudally, and those in midthoracic segments project either rostrally or caudally in segmentally graded proportions. Moreover, rostrally and caudally projecting preganglionic neurons are skewed toward the rostral and caudal regions, respectively, of each midthoracic segment. The mechanisms that establish these segment-specific projections are unknown. Here we show that experimental manipulation of retinoid signaling in the chicken embryo alters the segment-specific pattern of sympathetic preganglionic projections and that this effect is mediated by the somitic mesoderm. Application of exogenous retinoic acid to a single rostral thoracic somite decreases the number of rostrally projecting preganglionic neurons at that level. Conversely, disrupting endogenous synthesis of retinoic acid in a single caudal thoracic somite increases the number of rostrally projecting preganglionic neurons at that level. The number of caudally projecting neurons does not change in either case, indicating that the effect is specific for rostrally projecting preganglionic neurons. These results indicate that the sizes of the rostrally and caudally projecting populations may be independently regulated by different factors. Opposing gradients of such factors along the longitudinal axis of the thoracic region of the embryo could be sufficient, in combination, to determine the segment-specific identity of preganglionic projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substance P plays an important role in the transmission of pain-related information in the dorsal horn of the spinal cord. Recent immunocytochemical studies have shown a mismatch between the distribution of substance P and its receptor in the superficial laminae of the dorsal horn. Because such a mismatch was not observed by using classical radioligand binding studies, we decided to investigate further the issue of the relationship between substance P and its receptor by using an antibody raised against a portion of the carboxyl terminal of the neurokinin 1 receptor and a bispecific monoclonal antibodies against substance P and horseradish peroxidase. Light microscopy revealed a good correlation between the distributions of substance P and the neurokinin 1 receptor, both being localized with highest densities in lamina I and outer lamina II of the spinal dorsal horn. An ultrastructural double-labeling study, combining preembedding immunogold with enzyme-based immunocytochemistry, showed that most neurokinin 1 receptor immunoreactive dendrites were apposed by substance P containing boutons. A detailed quantitative analysis revealed that neurokinin 1 receptor immunoreactive dendrites received more appositions and synapses from substance P immunoreactive terminals than those not expressing the neurokinin 1 receptor. Such preferential innervation by substance P occurred in all superficial dorsal horn laminae even though neurokinin 1 receptor immunoreactive dendrites were a minority of the total number of dendritic profiles in the above laminae. These results suggest that, contrary to the belief that neuropeptides act in a diffuse manner at a considerable distance from their sites of release, substance P should act on profiles expressing the neurokinin 1 receptor at a short distance from its site of release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urotensin II (UII) is a cyclic peptide initially isolated from the caudal neurosecretory system of teleost fish. Subsequently, UII has been characterized from a frog brain extract, indicating that a gene encoding a UII precursor is also present in the genome of a tetrapod. Here, we report the characterization of the cDNAs encoding frog and human UII precursors and the localization of the corresponding mRNAs. In both frog and human, the UII sequence is located at the C-terminal position of the precursor. Human UII is composed of only 11 amino acid residues, while fish and frog UII possess 12 and 13 amino acid residues, respectively. The cyclic region of UII, which is responsible for the biological activity of the peptide, has been fully conserved from fish to human. Northern blot and dot blot analysis revealed that UII precursor mRNAs are found predominantly in the frog and human spinal cord. In situ hybridization studies showed that the UII precursor gene is actively expressed in motoneurons. The present study demonstrates that UII, which has long been regarded as a peptide exclusively produced by the urophysis of teleost fish, is actually present in the brain of amphibians and mammals. The fact that evolutionary pressure has acted to conserve fully the biologically active sequence of UII suggests that the peptide may exert important physiological functions in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To examine the delay in presentation, diagnosis, and treatment of malignant spinal cord compression and to define the effect of this delay on motor and bladder function at the time of treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spinal serotoninergic projection from the raphe magnus has been shown to modulate nociceptive inputs, and activation of this projection mediates nicotine-elicited analgesia. Here, we investigate the interactions between cholinergic and serotoninergic systems in the spinal cord, by conducting serotonin [5-hydroxytryptamine (5-HT)] efflux experiments on mouse spinal slices. At least three spinal populations of nicotinic receptors are distinguished that affect 5-HT release. The first could be directly located on serotoninergic terminals, is insensitive to nanomolar concentrations of methyllicaconitine (MLA), and may be subjected to a basal (not maximal) cholinergic tone. The second is tonically and maximally activated by endogenous acetylcholine, insensitive to nanomolar concentrations of MLA, and present on inhibitory neurons. The last is also present on inhibitory neurons but is sensitive to nanomolar concentrations of MLA and not tonically activated by acetylcholine. Multiple nicotinic acetylcholine receptor populations thus differentially exert tonic or not tonic control on 5-HT transmission in the spinal cord. These receptors may be major targets for nicotine effects on antinociception. In addition, the presence of a tonic nicotinic modulation of 5-HT release indicates that endogenous acetylcholine plays a role in the physiological regulation of descending 5-HT pathways to the spinal cord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A limited midline myelotomy at T10 can relieve pelvic cancer pain in patients. This observation is explainable in light of strong evidence in support of the existence of a visceral pain pathway that ascends in the dorsal column (DC) of the spinal cord. In rats and monkeys, responses of neurons in the ventral posterolateral thalamic nucleus to noxious colorectal distention are dramatically reduced after a lesion of the DC at T10, but not by interruption of the spinothalamic tract. Blockade of transmission of visceral nociceptive signals through the rat sacral cord by microdialysis administration of morphine or 6-cyano-7-nitroquinoxaline-2,3-dione shows that postsynaptic DC neurons in the sacral cord transmit visceral nociceptive signals to the gracile nucleus. Retrograde tracing studies in rats demonstrate a concentration of postsynaptic DC neurons in the central gray matter of the L6-S1 spinal segments, and anterograde tracing studies show that labeled axons ascend from this region to the gracile nucleus. A similar projection from the midthoracic spinal cord ends in the gracile and cuneate nuclei. Behavioral experiments demonstrate that DC lesions reduce the nocifensive responses produced by noxious stimulation of the pancreas and duodenum, as well as the electrophysiological responses of ventral posterolateral neurons to these stimuli. Repeated regional blood volume measurements were made in the thalamus and other brain structures in anesthetized monkeys in response to colorectal distention by functional MRI. Sham surgery did not reduce the regional blood volume changes, whereas the changes were eliminated by a DC lesion at T10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary sensory neurons that respond to noxious stimulation and project to the spinal cord are known to fall into two distinct groups: one sensitive to nerve growth factor and the other sensitive to glial cell-line-derived neurotrophic factor. There is currently considerable interest in the ways in which these factors may regulate nociceptor properties. Recently, however, it has emerged that another trophic factor—brain-derived neurotrophic factor (BDNF)—may play an important neuromodulatory role in the dorsal horn of the spinal cord. BDNF meets many of the criteria necessary to establish it as a neurotransmitter/neuromodulator in small-diameter nociceptive neurons. It is synthesized by these neurons and packaged in dense core vesicles in nociceptor terminals in the superficial dorsal horn. It is markedly up-regulated in inflammatory conditions in a nerve growth factor-dependent fashion. Postsynaptic cells in this region express receptors for BDNF. Spinal neurons show increased excitability to nociceptive inputs after treatment with exogenous BDNF. There are both electrophysiological and behavioral data showing that antagonism of BDNF at least partially prevents some aspects of central sensitization. Together, these findings suggest that BDNF may be released from primary sensory nociceptors with activity, particularly in some persistent pain states, and may then increase the excitability of rostrally projecting second-order systems. BDNF released from nociceptive terminals may thus contribute to the sensory abnormalities associated with some pathophysiological states, notably inflammatory conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical injury to the adult mammalian spinal cord results in permanent morphological disintegration including severance/laceration of brain-cord axons at the lesion site. We report here that some of the structural consequences of injury can be averted by altering the cellular components of the lesion site with x-irradiation. We observed that localized irradiation of the unilaterally transected adult rat spinal cord when delivered during a defined time-window (third week) postinjury prevented cavitation, enabled establishment of structural integrity, and resulted in regrowth of severed corticospinal axons through the lesion site and into the distal stump. In addition, we examined the natural course of degeneration and cavitation at the site of lesion with time after injury, noting that through the third week postinjury recovery processes are in progress and only at the fourth week do the destructive processes take over. Our data suggest that the adult mammalian spinal cord has innate mechanisms required for recovery from injury and that timed intervention in certain cellular events by x-irradiation prevents the onset of degeneration and thus enables structural regenerative processes to proceed unhindered. We postulate that a radiation-sensitive subgroup of cells triggers the delayed degenerative processes. The identity of these intrusive cells and the mechanisms for triggering tissue degeneration are still unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical injury to the adult mammalian spinal cord results in permanent loss of structural integrity at the lesion site and of the brain-controlled function distal to the lesion. Some of these consequences were permanently averted by altering the cellular constituents at the lesion site with x-irradiation delivered within a critical time window after injury. We have reported in a separate article that x-irradiation of sectioned adult rat spinal cord resulted in restitution of structural continuity and regrowth of severed corticospinal axons across and deep into the distal stump. Here, we report that after x-ray therapy of the lesion site severed corticospinal axons of transected adult rat spinal cord recover electrophysiologic control of activity of hindlimb muscles innervated by motoneurons distal to the lesion. The degree of recovery of control of muscle activity was directly related to the degree of restitution of structural integrity. This restitution of electrophysiologic function implies that the regenerating corticospinal axons reestablish connectivity with neurons within the target field in the distal stump. Our data suggest that recovery of structural continuity is a sufficient condition for the axotomized corticospinal neurons to regain some of their disrupted function in cord regions distal to the lesion site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These animals display clinical and pathological features closely resembling human ALS. Early changes observed in these animals were intra-axonal and dendritic vacuoles due to dilatation of the endoplasmic reticulum and vacuolar degeneration of mitochondria. We have reported that the Golgi apparatus of spinal cord motor neurons in patients with sporadic ALS is fragmented and atrophic. In this study we show that spinal cord motor neurons of transgenic mice for an SOD1 mutation display a lesion of the Golgi apparatus identical to that found in humans with sporadic ALS. In these mice, the stacks of the cisternae of the fragmented Golgi apparatus are shorter than in the normal organelle, and there is a reduction in Golgi-associated vesicles and adjacent cisternae of the rough endoplasmic reticulum. Furthermore, the fragmentation of the Golgi apparatus occurs in an early, presymptomatic stage and usually precedes the development of the vacuolar changes. Transgenic mice overexpressing the wild-type human superoxide dismutase are normal. In familial ALS, an early lesion of the Golgi apparatus of motor neurons may have adverse functional effects, because newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, synaptic activity in the spinal cord of adult mammals was attributed exclusively to chemical neurotransmission. In this study, evidence was obtained for the existence, relative abundance, and widespread distribution of "mixed" (chemical and electrical) synapses on neurons throughout the spinal cords of adult mammals. Using combined confocal microscopy and "grid-mapped freeze fracture," 36 mixed synapses containing 88 "micro" gap junctions (median = 45 connexons) were found and mapped to 33 interneurons and motor neurons in Rexed laminae III-IX in cervical, thoracic, and lumbosacral spinal cords of adult male and female rats. Gap junctions were adjacent to presumptive active zones, where even small gap junctions would be expected to increase synaptic efficacy. Two morphological types of mixed synapse were discerned. One type contained distinctive active zones consisting of "nested" concentric toroidal deformations of pre- and postsynaptic membranes, which, because of their unusual topology, were designated as "synaptic sombreros." A second type had gap junctions adjacent to active zones consisting of broad, flat, shallow indentations of the plasma membrane. Morphometric analysis indicates that mixed synapses correspond to 3-5% of all synapses on the somata and proximal dendrites, but, because of their subcellular location and morphology, they could represent 30-100% of excitatory synapses. The relative abundance of mixed synapses on several classes of neurons in spinal cords of adult rats suggests that mixed synapses provide important but previously unrecognized pathways for bidirectional communication between neurons in the mammalian central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary artery disease is a leading cause of death in individuals with chronic spinal cord injury (SCI). However, platelets of those with SCI (n = 30) showed neither increased aggregation nor resistance to the antiaggregatory effects of prostacyclin when compared with normal controls (n = 30). Prostanoid-induced cAMP synthesis was similar in both groups. In contrast, prostacyclin, which completely inhibited the platelet-stimulated thrombin generation in normal controls, failed to do so in those with SCI. Scatchard analysis of the binding of [3H]prostaglandin E1, used as a prostacyclin receptor probe, showed the presence of one high-affinity (Kd1 = 8.11 +/- 2.80 nM; n1 = 172 +/- 32 sites per cell) and one low-affinity (Kd2 = 1.01 +/- 0.3 microM; n2 = 1772 +/- 226 sites per cell) prostacyclin receptor in normal platelets. In contrast, the same analysis in subjects with SCI showed significant loss (P < 0.001) of high-affinity receptor sites (Kd1 = 6.34 +/- 1.91 nM; n1 = 43 +/- 10 sites per cell) with no significant change in the low affinity-receptors (Kd2 = 1.22 +/- 0.23; n2 = 1820 +/- 421). Treatment of these platelets with insulin, which has been demonstrated to restore both of the high- and low-affinity prostaglandin receptor numbers to within normal ranges in coronary artery disease, increased high-affinity receptor numbers and restored the prostacyclin effect on thrombin generation. These results demonstrate that the loss of the inhibitory effect of prostacyclin on the stimulation of thrombin generation was due to the loss of platelet high-affinity prostanoid receptors, which may contribute to atherogenesis in individuals with chronic SCI.