880 resultados para Spike rush


Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane. Digital reproduction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spike Island holds a unique place among the world’s prisons: a welcome necessity for the prison authorities of Ireland, a remote and dangerous posting for its staff, a grand hell for those convicted to stay behind its walls. For almost four decades the Victorian prison on Spike Island was home to Ireland’s most serious and notorious criminals. Established in the midst of one of the worst famines in global history, this huge facility became the largest prison in what was then the United Kingdom, dwarfing institutions like Dartmoor, Pentonville, Mountjoy and Kilmainham. High death rates during its formative years meant that many of its malnourished inmates were laid to rest beneath its sod. Yet Spike Island was to become a beacon of penal reform, influencing modern correctional systems in countries as far apart as the USA and Germany. The story told in this book is one that is, in turn, dramatic, shocking, touching and humorous. The life of the prison was vibrant, peopled by the unfortunate of the society alongside those who committed serious, sometimes gruesome, crimes. This is the story of the establishment and evolution of the prison over 36 years, the often fascinating lives of prisoners and staff and of a time when a renowned Irish fortress of British military power entered the annals of penal infamy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we introduce a continuum model of neural tissue that include the effects of so-called spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon the non-local network connectivity, synaptic response, and firing rate of a single neuron. A phenomenological model of SFA is examined whereby the firing rate is taken to be a simple state-dependent threshold function. As in the case without SFA classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps). Importantly an analysis of bump stability using recent Evans function techniques shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Direct numerical simulations both confirm our theoretical predictions and illustrate the rich dynamic behavior of this model, including the appearance of self-replicating bumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modelled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. Here we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded in a simple one-dimensional cable. This system is shown to support saltatory waves as a result of the discrete distribution of spines. Moreover, we demonstrate one of the ways to incorporate noise into the spine-head whilst retaining computational tractability of the model. The SDS model sustains a variety of propagating patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. In this paper we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded on a simple one-dimensional cable. In the first instance this system is shown to support saltatory waves with the same qualitative features as those observed in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover, there is excellent agreement with the analytically calculated speed for a solitary saltatory pulse. Upon driving the system with time varying external input we find that the distribution of spines can play a crucial role in determining spatio-temporal filtering properties. In particular, the SDS model in response to periodic pulse train shows a positive correlation between spine density and low-pass temporal filtering that is consistent with the experimental results of Rose and Fortune [1999, Mechanisms for generating temporal filters in the electrosensory system. The Journal of Experimental Biology 202, 1281-1289]. Further, we demonstrate the robustness of observed wave properties to natural sources of noise that arise both in the cable and the spine-head, and highlight the possibility of purely noise induced waves and coherent oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass spectrometry (MS)-based proteomics has seen significant technical advances during the past two decades and mass spectrometry has become a central tool in many biosciences. Despite the popularity of MS-based methods, the handling of the systematic non-biological variation in the data remains a common problem. This biasing variation can result from several sources ranging from sample handling to differences caused by the instrumentation. Normalization is the procedure which aims to account for this biasing variation and make samples comparable. Many normalization methods commonly used in proteomics have been adapted from the DNA-microarray world. Studies comparing normalization methods with proteomics data sets using some variability measures exist. However, a more thorough comparison looking at the quantitative and qualitative differences of the performance of the different normalization methods and at their ability in preserving the true differential expression signal of proteins, is lacking. In this thesis, several popular and widely used normalization methods (the Linear regression normalization, Local regression normalization, Variance stabilizing normalization, Quantile-normalization, Median central tendency normalization and also variants of some of the forementioned methods), representing different strategies in normalization are being compared and evaluated with a benchmark spike-in proteomics data set. The normalization methods are evaluated in several ways. The performance of the normalization methods is evaluated qualitatively and quantitatively on a global scale and in pairwise comparisons of sample groups. In addition, it is investigated, whether performing the normalization globally on the whole data or pairwise for the comparison pairs examined, affects the performance of the normalization method in normalizing the data and preserving the true differential expression signal. In this thesis, both major and minor differences in the performance of the different normalization methods were found. Also, the way in which the normalization was performed (global normalization of the whole data or pairwise normalization of the comparison pair) affected the performance of some of the methods in pairwise comparisons. Differences among variants of the same methods were also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Gierer-Meinhardt system with precursor inhomogeneity in a one-dimensional interval. A spike cluster is the combination of several spikes which all approach the same point in the singular limit of small activator diffusivity. We rigorously prove the existence of a steady-state spike cluster consisting of N spikes near a non-degenerate local minimum point of the smooth inhomogeneity, where N is an arbitrary positive integer. Further, we show that this solution is linearly stable. We explicitly compute all eigenvalues, both large (of order O(1)) and small (of order o(1)). The main features of studying the Gierer-Meinhardt system in this setting are as follows: (i) it is biologically relevant since it models a hierarchical process (pattern formation of small-scale structures induced by a pre-existing large-scale inhomogeneity), (ii) it contains three different spatial scales two of which are small. (iii) all the expressions can be made explicit and often have a particularly simple form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual and collective efforts to mitigate climate change in the form of carbon offsetting and emissions trading schemes have recently become the focus of much media attention. In this paper we explore a subset of the UK national press coverage centered on such schemes. The articles, selected from general as well as specialized business and finance newspapers, make use of gold rush, Wild West and cowboy imagery which is rooted in deeply entrenched myths and metaphors and allows readers to make sense of very complex environmental, political, ethical, and financial issues associated with carbon mitigation. They make what appears complicated and unfamiliar, namely carbon trading and offsetting, seem less complex and more familiar. A critical discussion of this type of imagery is necessary in order to uncover and question tacit assumptions and connotations which are built into it and which might otherwise go unnoticed and unchallenged in environmental communication.