1000 resultados para Sperm preparation
Resumo:
In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.
Resumo:
Reticulated porous Ti3AlC2 ceramic, a member of the MAX-phase family (Mn+1AXn phases, where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen), was prepared from the highly dispersed aqueous suspension by a replica template method. Through a cathodic electrogeneration method, nanocrystalline catalytic CeO2 coatings were deposited on the conductive porous Ti 3AlC2 supports. By adjusting the pH value and cathodic deposition current, coatings exhibiting nanocellar, nanosheets-like, or bubble-free morphologies can be obtained. This work expects to introduce a novel practically feasible material system and a catalytic coating preparation technique for gas exhaust catalyst devices.
Resumo:
New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.
Resumo:
Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The carbohydrate residues of glycosphingolipids were implicated in many biologic processes such as cell-to-cell interactions; and as receptors for some viruses, bacterial and plant toxins, hormones, and so forth, and invariably for all the lectins (1). However, their receptor functions remained poorly defined for a long time as they form micelles even at very low concentrations in aqueous medium. In micelles, the oligosaccharide chains are not expected to have a well defined orientation suitable for recognition by macromolecular ligands. This problem was overcome by incorporating them in model membranes, namely, the liposomes. The demonstration of lectin-glycolipid interaction using liposomal model membranes was a crucial development that established glycolipids as biological receptors. Moreover, glycolipid-bearing liposomes provide a convenient system for investigating the role of glycolipid density, orientation, and exposure of their oligosaccharide chains at the membrane interface relevant to their receptor function (2–4).
Resumo:
The preparation of three different types of carbonates of praseodymium, neodymium and terbium has been described. The carbonates have been characterized by potentiometry, chemical analysis, X-ray crystallography, infra-red spectroscopy and by their thermal behaviour. The thermal decomposition of several carbonates has been studied exhaustively under a variety of conditions and the stoicheiometry, thermodynamics and energetics of the reactions at various stages of decomposition have been examined. The stoicheiometry of the oxides obtained as final products of decomposition has been examined.
Resumo:
Lithium amalgam is useful in effecting Wurtz type intramolecular and intermolecular coupling reactions.
Resumo:
Previously, it was reported from this laboratory that the heme groups of hemoglobin are “buried” within globin at pH 4.0 and not dissociated, on the basis of the obiligatory requirement of urea for the reaction of N-bromosuccinimide with the heme groups of hemoglobin at pH4.0, and also on the basis of the “normalization” of the spectrum of hemoglobin at this pH in the presence of urea or sucrose. In the present study, it has been shown that the behaviour of sperm whale myoglobin with respect to its reaction with N-bromosuccinimide and with respect to spectral “normalization” in urea or sucrose are essentially similar to that of hemoglobin. It has also been demonstrated that the spectral “normalization” obtained with crystalline hemin is not identical with that obtained with either hemoglobin or myoglobin. The bearing of the results of the present study on the earlier work on hemoglobin is indicated.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
RECENT work on the lower oxide of sulphur1,2 has established that disulphur monoxide (S2O) or its polymeric form is produced when sulphur is burnt in oxygen under reduced pressure. It has now been shown that it is possible to make use of an oxide of a heavy metal as a source of limited supply of oxygen to prepare the disulphur monoxide. For example, when a mixture of finely powdered cupric oxide and sulphur (1 : 5 by weight) is heated under vacuum in a glass tube gaseous products are evolved. which, on cooling in a trap surrounded by liquid air, will give an orange-red condensate (S2O)x. This condensate also gives off sulphur dioxide in stages as the temperature is raised, finally leaving a residue of elemental sulphur. Copper sulphide and excess of sulphur are left behind in the reaction tube.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
A comparatively simple and rapid method for the identification, estimation and preparation of fatty acids has been developed, using reversed phase circular paper chromatography. The method is also suitable for the analysis of “Critical Pairs” of fatty acids and for the preparation of fatty acids. Further, when used at a higher temperature, the method is more sensitive in revealing the presence of even traces of higher fatty acids in the seeds of Adenanthera pavonina.
Resumo:
Nanoplate LiFePO4 is synthesized by a polyol route starting from only two reactants, namely, FePO4 and LiOH. The crystalline compound forms by refluxing a tetraethylene glycol solution consisting of FePO4 and LiOH at 335 degrees C without further heating of the reaction product.The nanoplates have average dimensions of 30 nm width and 160 nm length, as measured from transmission electron microscopy micrographs.The surface area of the LiFePO4 sample is 38 m(2) g(-1). Also, the sample is porous with a broadly distributed pore around 50 nm. The electrodes fabricated out of the nanoplate of LiFePO4 exhibit a high electrochemical activity. Discharge capacity values measured are 160 and 100 mAh g(-1) at 0.15C and 3.45C, respectively. A stable capacity of about 155 mAh g(-1) is measured at 0.2C over a 50 charge-discharge cycle. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3425730] All rights reserved.