971 resultados para Speech Processing
Resumo:
Studies of orthographic skills transfer between languages focus mostly on working memory (WM) ability in alphabetic first language (L1) speakers when learning another, often alphabetically congruent, language. We report two studies that, instead, explored the transferability of L1 orthographic processing skills in WM in logographic-L1 and alphabetic-L1 speakers. English-French bilingual and English monolingual (alphabetic-L1) speakers, and Chinese-English (logographic-L1) speakers, learned a set of artificial logographs and associated meanings (Study 1). The logographs were used in WM tasks with and without concurrent articulatory or visuo-spatial suppression. The logographic-L1 bilinguals were markedly less affected by articulatory suppression than alphabetic-L1 monolinguals (who did not differ from their bilingual peers). Bilinguals overall were less affected by spatial interference, reflecting superior phonological processing skills or, conceivably, greater executive control. A comparison of span sizes for meaningful and meaningless logographs (Study 2) replicated these findings. However, the logographic-L1 bilinguals’ spans in L1 were measurably greater than those of their alphabetic-L1 (bilingual and monolingual) peers; a finding unaccounted for by faster articulation rates or differences in general intelligence. The overall pattern of results suggests an advantage (possibly perceptual) for logographic-L1 speakers, over and above the bilingual advantage also seen elsewhere in third language (L3) acquisition.
Resumo:
Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.
Resumo:
Sound tagging has been studied for years. Among all sound types, music, speech, and environmental sound are three hottest research areas. This survey aims to provide an overview about the state-of-the-art development in these areas.We discuss about the meaning of tagging in different sound areas at the beginning of the journey. Some examples of sound tagging applications are introduced in order to illustrate the significance of this research. Typical tagging techniques include manual, automatic, and semi-automatic approaches.After reviewing work in music, speech and environmental sound tagging, we compare them and state the research progress to date. Research gaps are identified for each research area and the common features and discriminations between three areas are discovered as well. Published datasets, tools used by researchers, and evaluation measures frequently applied in the analysis are listed. In the end, we summarise the worldwide distribution of countries dedicated to sound tagging research for years.
Resumo:
The support for typically out-of-vocabulary query terms such as names, acronyms, and foreign words is an important requirement of many speech indexing applications. However, to date many unrestricted vocabulary indexing systems have struggled to provide a balance between good detection rate and fast query speeds. This paper presents a fast and accurate unrestricted vocabulary speech indexing technique named Dynamic Match Lattice Spotting (DMLS). The proposed method augments the conventional lattice spotting technique with dynamic sequence matching, together with a number of other novel algorithmic enhancements, to obtain a system that is capable of searching hours of speech in seconds while maintaining excellent detection performance
Resumo:
In this study we investigate previous claims that a region in the left posterior superior temporal sulcus (pSTS) is more activated by audiovisual than unimodal processing. First, we compare audiovisual to visual-visual and auditory-auditory conceptual matching using auditory or visual object names that are paired with pictures of objects or their environmental sounds. Second, we compare congruent and incongruent audiovisual trials when presentation is simultaneous or sequential. Third, we compare audiovisual stimuli that are either verbal (auditory and visual words) or nonverbal (pictures of objects and their associated sounds). The results demonstrate that, when task, attention, and stimuli are controlled, pSTS activation for audiovisual conceptual matching is 1) identical to that observed for intramodal conceptual matching, 2) greater for incongruent than congruent trials when auditory and visual stimuli are simultaneously presented, and 3) identical for verbal and nonverbal stimuli. These results are not consistent with previous claims that pSTS activation reflects the active formation of an integrated audiovisual representation. After a discussion of the stimulus and task factors that modulate activation, we conclude that, when stimulus input, task, and attention are controlled, pSTS is part of a distributed set of regions involved in conceptual matching, irrespective of whether the stimuli are audiovisual, auditory-auditory or visual-visual.
Resumo:
This fMRI study investigates how audiovisual integration differs for verbal stimuli that can be matched at a phonological level and nonverbal stimuli that can be matched at a semantic level. Subjects were presented simultaneously with one visual and one auditory stimulus and were instructed to decide whether these stimuli referred to the same object or not. Verbal stimuli were simultaneously presented spoken and written object names, and nonverbal stimuli were photographs of objects simultaneously presented with naturally occurring object sounds. Stimulus differences were controlled by including two further conditions that paired photographs of objects with spoken words and object sounds with written words. Verbal matching, relative to all other conditions, increased activation in a region of the left superior temporal sulcus that has previously been associated with phonological processing. Nonverbal matching, relative to all other conditions, increased activation in a right fusiform region that has previously been associated with structural and conceptual object processing. Thus, we demonstrate how brain activation for audiovisual integration depends on the verbal content of the stimuli, even when stimulus and task processing differences are controlled.
Resumo:
To identify and categorize complex stimuli such as familiar objects or speech, the human brain integrates information that is abstracted at multiple levels from its sensory inputs. Using cross-modal priming for spoken words and sounds, this functional magnetic resonance imaging study identified 3 distinct classes of visuoauditory incongruency effects: visuoauditory incongruency effects were selective for 1) spoken words in the left superior temporal sulcus (STS), 2) environmental sounds in the left angular gyrus (AG), and 3) both words and sounds in the lateral and medial prefrontal cortices (IFS/mPFC). From a cognitive perspective, these incongruency effects suggest that prior visual information influences the neural processes underlying speech and sound recognition at multiple levels, with the STS being involved in phonological, AG in semantic, and mPFC/IFS in higher conceptual processing. In terms of neural mechanisms, effective connectivity analyses (dynamic causal modeling) suggest that these incongruency effects may emerge via greater bottom-up effects from early auditory regions to intermediate multisensory integration areas (i.e., STS and AG). This is consistent with a predictive coding perspective on hierarchical Bayesian inference in the cortex where the domain of the prediction error (phonological vs. semantic) determines its regional expression (middle temporal gyrus/STS vs. AG/intraparietal sulcus).
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator. The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
We propose a simple speech music discriminator that uses features based on HILN(Harmonics, Individual Lines and Noise) model. We have been able to test the strength of the feature set on a standard database of 66 files and get an accuracy of around 97%. We also have tested on sung queries and polyphonic music and have got very good results. The current algorithm is being used to discriminate between sung queries and played (using an instrument like flute) queries for a Query by Humming(QBH) system currently under development in the lab.
Resumo:
Non-uniform sampling of a signal is formulated as an optimization problem which minimizes the reconstruction signal error. Dynamic programming (DP) has been used to solve this problem efficiently for a finite duration signal. Further, the optimum samples are quantized to realize a speech coder. The quantizer and the DP based optimum search for non-uniform samples (DP-NUS) can be combined in a closed-loop manner, which provides distinct advantage over the open-loop formulation. The DP-NUS formulation provides a useful control over the trade-off between bitrate and performance (reconstruction error). It is shown that 5-10 dB SNR improvement is possible using DP-NUS compared to extrema sampling approach. In addition, the close-loop DP-NUS gives a 4-5 dB improvement in reconstruction error.
Resumo:
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.