900 resultados para Spectral peak track
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.
Resumo:
In this paper we exploit the nonlinear property of the SiC multilayer devices to design an optical processor for error detection that enables reliable delivery of spectral data of four-wave mixing over unreliable communication channels. The SiC optical processor is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Visible pulsed signals are transmitted together at different bit sequences. The combined optical signal is analyzed. Data show that the background acts as selector that picks one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as EXOR and three bit addition are demonstrated optically, showing that when one or all of the inputs are present, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed using four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all-optical processor for error detection and then provide an experimental demonstration of this idea. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The SiC optical processor for error detection and correction is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Data shows that the background act as selector that pick one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as exclusive OR (EXOR) and three bit addition are demonstrated optically with a combination of such switching devices, showing that when one or all of the inputs are present the output will be amplified, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed by use of the four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all optical processor for error detection and correction and then, provide an experimental demonstration of this fault tolerant reversible system, in emerging nanotechnology.
Resumo:
Resumo Objectivos: Avaliação da Tosse em doentes com Doença Pulmonar Obstrutiva Crónica (DPOC). Identificar e determinar a relação dos factores preditivos que contribuem para a deterioração da capacidade de tosse nestes indivíduos. Tipo de estudo: Estudo observacional descritivo de natureza transversal. Definição dos casos: Os critérios de diagnóstico da DPOC são o quadro clínico e o Gold standard para diagnóstico da DPOC – a espirometria. População-alvo: Todos os utentes com patologia primária de DPOC diagnosticada que se desloquem ao serviço de função respiratória do Hospital de Viseu, para realizar provas. Método de Amostragem: Foi utilizada uma amostra aleatória constituída por todos os indivíduos, que cumpriram os critérios de inclusão, conscientes e colaborantes, que aceitaram participar neste estudo. Dimensão da amostra: Uma amostra de 55 indivíduos que se deslocaram ao serviço de função respiratória, entre Janeiro e Junho de 2009, para realizar provas de função respiratória. Condução do estudo: Os utentes que aceitaram participar neste estudo foram sujeitos a um questionário de dados clínicos e realizaram 5 testes: índice de massa corporal (IMC), estudo funcional respiratório e gasometria arterial, avaliação da força dos músculos respiratórios (PImax e PEmax) e avaliação do débito máximo da tosse (Peak Cough Flow). Análise estatística: Foram obtidos dados caracterizadores da amostra em estudo, sendo posteriormente correlacionado o valor de débito máximo da tosse (Peak Cough Flow) com os resultados obtidos para as avaliações do IMC, estudo funcional respiratório, PImax e PEmax, gasometria, avaliação da capacidade de Tosse e número de internamentos no último ano por agudização da DPOC. Tendo sido encontrados os valores de correlação entre o Peak Cough Flow e os restantes parâmetros. Resultados: Após análise dos resultados, foram obtidos os valores de Peak Cough Flow para a população com DPOC e verificou-se valores diminuídos em comparação com os valores normais da população, tendo-se verificado maiores valores de PCF em indivíduos do sexo masculino, em comparação aos valores do sexo feminino. Foi analisada a relação entre o PCF e a idade, peso, altura e IMC, não tendo sido encontrada relação, dado que a tosse não apresenta uma variação segundo os valores antropométricos, tal como a relação com os valores espirométricos. Quanto aos parâmetros funcionais respiratórios foram analisadas as relações com o PCF. Verificou-se relações significativas entre o PCF e o FEV1, a FVC, o PEF, apresentando uma relação positiva, onde maiores valores destes parâmetros estão correlacionados com maiores picos de tosse. Quanto a RAW e RV, o PCF apresenta uma relação negativa, onde uma maior resistência da via aérea ou doentes mais hiperinsuflados leva a menores valores de PCF. Por outro lado não foi encontrada relação entre o PCF e a FRC e o TLC. Quanto à força dos músculos respiratórios, verificou-se relação significativa com o PImax e a PEmax em que a fraqueza ao nível dos músculos respiratórios contribuem para um menor valor de PCF. Relativamente aos valores da gasometria arterial, verificou-se relação entre o PCF e a PaO2 de forma positiva, em que doentes hipoxémicos apresentam menores valores de tosse, e a PaCO2, de forma negativa, em que os doentes hipercápnicos apresentam menores valores de PCF tendo sido verificada relação entre o PCF e o pH e sO2. Quanto à relação entre o número de internamentos por agudização da DPOC no último ano e o PCF verificou-se uma relação significativa, onde um menor valor de PCF contribui para uma maior taxa de internamento por agudização da DPOC. Conclusão: Este conjunto de conclusões corrobora a hipótese inicialmente formulada, de que o Peak Cough Flow se encontra diminuído nos indivíduos com Doença Pulmonar Obstrutiva Crónica onde a variação do PCF se encontra directamente relacionada com os parâmetros funcionais respiratórios, com a força dos músculos respiratórios e com os valores de gasometria arterial. ABSTRACT: Aims: Cough evaluation in Chronic Obstructive Pulmonary Disease (COPD) patients. Identify and determine the relation of the predictive factors that contribute to the cough capacity degradation in this type of patients. Type of study: Descriptive observational study of transversal nature. Case definition: The COPD diagnosis criteria are the clinical presentation and the gold standard to the COPD diagnosis- the Spirometry. Target Population: Every patients, with primary pathology of COPD diagnosed, who went to the respiratory function service of Viseu hospital to perform tests. Sampling Method: It was used a random sample constituted by all the, conscious and cooperating individuals, who complied with the inclusion criteria and who accepted to make part of this study. Sample size: A sample of 55 individuals that went to the respiratory function service between January and June 2009 to perform respiratory function tests. Study: The patients who accepted to make part of this study were submitted to a clinical data questionary and performed 5 tests: body mass index (BMI), respiratory functional study, arterial blood gas level, evaluation of respiratory muscles strength (maximal inspiratory pressure (MIP) and maximum expiratory pressure (MEP)), and Peak Cough Flow evaluation. Statistic Analysis: Were obtained characterizing data of the sample in study, and later correlated the value of the Peak Cough Flow with the results from the evaluation of the body mass index (BMI), the respiratory functional study the MIP and MEP, the arterial blood gas level and also with the ability to cough evaluation and the number of hospitalizations in the last year for COPD exacerbations. The values of correlation between the Peak Cough Flow and the other parameters were found. Results: After analyzing the results, were obtained the values of Peak Cough Flow for the population with COPD. There were decreased values compared with the population normal values, having been found higher values of PCF in males compared to female values. It was analyzed the relation between the PCF and the age, weight, height and BMI but no relation was found on account of the fact that the cough does not show a variation according to anthropometric parameters, such as the relation with spirometric values. As for the respiratory functional parameters were analyzed relations with the PCF. There were significant relations between the PCF and FEV1, the FVC, the PEF, presenting a positive relation, where higher values of these parameters are correlated with higher incidence of cough. Concerning the RAW and RV, the PCF has a negative relation, in which a higher airway resistance or in more hyperinflated patients, leads to lower values of PCF. On the other hand no correlation was found between the PCF and the FRC and TLC. Regarding the respiratory muscle strength, there was a significant relation with the MIP and MEP, in which the weakness at the level of respiratory muscles contribute to a lower value of PCF. For values of arterial blood gas level, there was no relation between the PCF and PaO2, in a positive way, in which patients with hypoxemia present lower values of cough, and PaCO2, in a negative way in which hypercapnic patients had lower values of PCF, having being founded a relation between the PCF and the pH and sO2. As for the relation between the number of hospitalizations for COPD exacerbation in the last year and the PCF was found a significant relation, in which a smaller value of PCF contributes to a higher rate of hospitalization for COPD exacerbation. Conclusion: This set of findings supports the hypothesis first formulated that Peak Cough Flow is decreased in individuals with Chronic Obstructive Pulmonary Disease, in which the variation of the PCF is directly related to the respiratory function parameters, the strength of respiratory muscles and the values of arterial blood gases.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).
Resumo:
For an interval map, the poles of the Artin-Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power [zeta(F) (z)](p) of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function zeta(f)(z) only has poles in the unit disk, in the p-periodic nonautonomous case [zeta(F)(z)](p) may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [zeta(F)(z)](p) in this context. As we will see, these zeros play an important role in the spectral classification of these systems.
Resumo:
Journal of Hydraulic Engineering, Vol. 135, No. 11, November 1, 2009
Resumo:
Railway vehicle homologation, with respect to running dynamics, is addressed via dedicated norms. The results required, such as, accelerations and/or wheel-rail contact forces, obtained from experimental tests or simulations, must be available. Multibody dynamics allows the modelling of railway vehicles and their representation in real operations conditions, being the realism of the multibody models greatly influenced by the modelling assumptions. In this paper, two alternative multibody models of the Light Rail Vehicle 2000 (LRV) are constructed and simulated in a realistic railway track scenarios. The vehicle-track interaction compatibility analysis consists of two stages: the use of the simplified method described in the norm "UIC 518-Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behaviour-Safety-Track Fatigue-Running Behaviour" for decision making; and, visualization inspection of the vehicle motion with respect to the track via dedicated tools for understanding the mechanisms involved.
Resumo:
Mestrado em Engenharia Química - Tecnologias de Protecção Ambiental
Resumo:
The main result of this work is a new criterion for the formation of good clusters in a graph. This criterion uses a new dynamical invariant, the performance of a clustering, that characterizes the quality of the formation of clusters. We prove that the growth of the dynamical invariant, the network topological entropy, has the effect of worsening the quality of a clustering, in a process of cluster formation by the successive removal of edges. Several examples of clustering on the same network are presented to compare the behavior of other parameters such as network topological entropy, conductance, coefficient of clustering and performance of a clustering with the number of edges in a process of clustering by successive removal.
Critical Velocity obtained using Simplified Models of the Railway Track: Viability and Applicability
Resumo:
Increased demands on the capacity of the railway network gave rise to new issues related to the dynamic response of railway tracks subjected to moving vehicles. Thus, it becomes important to evaluate the applicability of traditionally used simplified models which have a closed form solution. Regarding simplified models, transversal vibrations of a beam on a visco-elastic foundation subjected to a moving load are considered. Governing equations are obtained by Hamilton’s principle. Shear distortion, rotary inertia and effect of axial force are accounted for. The load is introduced as a time varying force moving at a constant velocity. Transversal vibrations induced by the load are solved by the normal-mode analysis. Reflected waves at the extremities of the full beam are avoided by introduction of semi-infinite elements. Firstly, the critical velocity obtained from this model is compared with results of an undamped Euler- Bernoulli formulation with zero axial force. Secondly, a finite element model in ABAQUS is examined. The new contribution lies in the introduction of semi- infinite elements and in the first step to a systematic comparison, which have not been published so fa
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.