963 resultados para Specific heat
Resumo:
The transient process of solidification of laminar liquid flow (water) submitted to super-cooling was investigated both theoretically and experimentally. In this study an alternative analytical formulation and numerical approach were adopted resulting in the unsteady model with temperature dependent thermophysical properties in the solid region. The proposed model is based upon the fundamental equations of energy balance in the solid and liquid regions as well as across the solidification front. The basic equations and the associated boundary and initial conditions were made dimensionless by using the Landau transformation to immobilize the moving front and render the problem to a fixed plane type problem. A laminar velocity profile is admitted in the liquid domain and the resulting equations were discretized using the finite difference approach. The numerical predictions obtained were compared with the available results based on other models and concepts such as Neumann analytical model, the apparent thermal capacity model due to Bonacina and the conventional fixed grid energy model due to Goodrich. To obtain further comparisons and more validation of the model and the numerical solution, an experimental rig was constructed and instrumented permitting very well controlled experimental measurements. The numerical predictions were compared with the experimental results and the agreement was found satisfactory.
Resumo:
The exact solution for the full electronic Hamiltonian for a two-level dimer is obtained. The parameter constellation (roughly 20) is reparametrized via orthogonal Gaussian atomic orbitals, yielding a five-parameter model. With the dimer embedded in a thermal bath, the specific heat and several temperature-dependent dynamical susceptibilities are computed. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
This paper discusses the formation of microstructures with different volume fractions, as an outcome of a specific heat treatment, with the following phases: ferrite, martensite, bainite and retained austenite. For the microstructure characterization it is developed a chemical etching that allows to distinguish the phases by optical microscopy. The evaluation of the mechanical properties is done based on the results of tensile and fatigue tests. The experimental results show that appropriate heat treatments can contribute to a significant improvement in the mechanical properties of the steel. In this process it is essential to control the fraction volume, morphology of the phases, and grain size.
Resumo:
The specific heat, thermal conductivity and density of passion fruit juice were experimentally determined from 0.506 to 0.902 (wet basis) water content and temperatures from 0.4 to 68.8C. The experimental results were compared with existing and widely used models for the thermal properties. In addition, based on empiric equations from literature, new simple models were parameterized with a subset of the total experimental data. The specific heat and thermal conductivity showed linear dependency on water content and temperature, while the density was nonlinearly related to water content. The generalized predictive models were considerably good for this product but the empiric, product-specific models developed in the present work yield better predictions. Even though the existing models showed a moderate accuracy, the new simple ones would be preferred, because they constitute an easier and direct way of evaluating the thermal properties of passion fruit juice, requiring no information about the chemical composition of the product, and a reduced time of the estimation procedure, as the new empiric models are described in terms of only two physical parameters, the water content and the temperature. © Copyright 2005, Blackwell Publishing All Rights Reserved.
Resumo:
Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a ℤ3 Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first order deconfinement phase transition are discussed. © 2013 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
O conhecimento das propriedades termofísicas é de fundamental importância para o estudo de ligas metálicas obtidas por solidificação,uma vez que esta se relaciona de forma direta com o coeficiente de transferência de calor na interface metal/molde. Assim, o Grupo de Pesquisa em Metalurgia e de Meio Ambiente – GAPEMM da Universidade Federal do Pará desenvolve uma linha de pesquisa que propõe um conjunto de técnicas e procedimentos que visa determiná-las. Por outro lado, sabe-se que existe uma correlação significativa entre processo, estrutura e propriedades de um material obtido por solidificação, visto que a distribuição de soluto em uma liga metálica ocorre de maneira não uniforme. A maneira como ocorre solidificação e a quantificação das variáveis envolvidas no processo têm influência fundamental nas propriedades do material. O presente trabalho utilizou ligas Al-Cu (Al-2%Cu, Al-5%Cu e Al-8%Cu) obtidas por solidificação unidirecional vertical ascendente, realizado através de um dispositivo projetado, construído e aferido pelo GAPEMM. Através destas, pretende-se fazer um estudo do calor específico à medida que a frente de solidificação se afasta da chapa molde bem como com o aumento do teor de soluto. Para isso, foi utilizada uma técnica conhecida na literatura como Lei de Resfriamento de Newton, a qual possibilita através das curvas de temperatura x tempo determinar as temperaturas necessárias para o cálculo do calor específico.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG