908 resultados para Spatio-temporalité
Resumo:
We assess the strength of association between aerosol optical depth (AOD) retrievals from the GOES Aerosol/Smoke Product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform and therefore provides dense temporal coverage with half-hourly observations every day, in contrast to once per day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated instrument and retrieval algorithm. We find that correlations between GASP AOD and PM2.5 over time at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over space at fixed times are lower. Simple averaging over time actually reduces correlations over space dramatically, but statistical calibration allows averaging over time that produces strong correlations. These results and the data density of GASP AOD highlight its potential to help improve exposure estimates for epidemiological analyses. On average 40% of days in a month have a GASP AOD retrieval compared to 14% for MODIS and 4% for MISR. Furthermore, GASP AOD has been retrieved since November 1994, providing the possibility of a long-term record that pre-dates the availability of most PM2.5 monitoring data and other satellite instruments.
Resumo:
Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately
Resumo:
The last two decades have seen intense scientific and regulatory interest in the health effects of particulate matter (PM). Influential epidemiological studies that characterize chronic exposure of individuals rely on monitoring data that are sparse in space and time, so they often assign the same exposure to participants in large geographic areas and across time. We estimate monthly PM during 1988-2002 in a large spatial domain for use in studying health effects in the Nurses' Health Study. We develop a conceptually simple spatio-temporal model that uses a rich set of covariates. The model is used to estimate concentrations of PM10 for the full time period and PM2.5 for a subset of the period. For the earlier part of the period, 1988-1998, few PM2.5 monitors were operating, so we develop a simple extension to the model that represents PM2.5 conditionally on PM10 model predictions. In the epidemiological analysis, model predictions of PM10 are more strongly associated with health effects than when using simpler approaches to estimate exposure. Our modeling approach supports the application in estimating both fine-scale and large-scale spatial heterogeneity and capturing space-time interaction through the use of monthly-varying spatial surfaces. At the same time, the model is computationally feasible, implementable with standard software, and readily understandable to the scientific audience. Despite simplifying assumptions, the model has good predictive performance and uncertainty characterization.
Resumo:
Brian electric activity is viewed as sequences of momentary maps of potential distribution. Frequency-domain source modeling, estimation of the complexity of the trajectory of the mapped brain field distributions in state space, and microstate parsing were used as analysis tools. Input-presentation as well as task-free (spontaneous thought) data collection paradigms were employed. We found: Alpha EEG field strength is more affected by visualizing mentation than by abstract mentation, both input-driven as well as self-generated. There are different neuronal populations and brain locations of the electric generators for different temporal frequencies of the brain field. Different alpha frequencies execute different brain functions as revealed by canonical correlations with mentation profiles. Different modes of mentation engage the same temporal frequencies at different brain locations. The basic structure of alpha electric fields implies inhomogeneity over time — alpha consists of concatenated global microstates in the sub-second range, characterized by quasi-stable field topographies, and rapid transitions between the microstates. In general, brain activity is strongly discontinuous, indicating that parsing into field landscape-defined microstates is appropriate. Different modes of spontaneous and induced mentation are associated with different brain electric microstates; these are proposed as candidates for psychophysiological ``atoms of thought''.
Resumo:
Modern mixed alluvial-bedrock channels in mountainous areas provide natural laboratories for understanding the time scales at which coarse-grained material has been entrained and transported from their sources to the adjacent sedimentary sink, where these deposits are preserved as conglomerates. This article assesses the shear stress conditions needed for the entrainment of the coarse-bed particles in the Glogn River that drains the 400 km2 Val Lumnezia basin, eastern Swiss Alps. In addition, quantitative data are presented on sediment transport patterns in this stream. The longitudinal stream profile of this river is characterized by three ca 500 m long knickzones where channel gradients range from 0·02 to 0·2 m m−1, and where the valley bottom confined into a <10 m wide gorge. Downstream of these knickzones, the stream is flat with gradients <0·01 m m−1 and widths ≥30 m. Measurements of the grain-size distribution along the trunk stream yield a mean D84 value of ca 270 mm, whereas the mean D50 is ca 100 mm. The consequences of the channel morphology and the grain-size distribution for the time scales of sediment transport were explored by using a one-dimensional step-backwater hydraulic model (Hydrologic Engineering Centre – River Analysis System). The results reveal that, along the entire trunk stream, a two to 10 year return period flood event is capable of mobilizing both the D50 and D84 fractions where the Shields stress exceeds the critical Shields stress for the initiation of particle motion. These return periods, however, varied substantially depending on the channel geometry and the pebble/boulder size distribution of the supplied material. Accordingly, the stream exhibits a highly dynamic boulder cover behaviour. It is likely that these time scales might also have been at work when coarse-grained conglomerates were constructed in the geological past.
Resumo:
Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.
Resumo:
The three canonical Rho GTPases RhoA, Rac1 and Cdc42 co-ordinate cytoskeletal dynamics. Recent studies indicate that all three Rho GTPases are activated at the leading edge of motile fibroblasts, where their activity fluctuates at subminute time and micrometer length scales. Here, we use a microfluidic chip to acutely manipulate fibroblast edge dynamics by applying pulses of platelet-derived growth factor (PDGF) or the Rho kinase inhibitor Y-27632 (which lowers contractility). This induces acute and robust membrane protrusion and retraction events, that exhibit stereotyped cytoskeletal dynamics, allowing us to fairly compare specific morphodynamic states across experiments. Using a novel Cdc42, as well as previously described, second generation RhoA and Rac1 biosensors, we observe distinct spatio-temporal signaling programs that involve all three Rho GTPases, during protrusion/retraction edge dynamics. Our results suggest that Rac1, Cdc42 and RhoA regulate different cytoskeletal and adhesion processes to fine tune the highly plastic edge protrusion/retraction dynamics that power cell motility.
Resumo:
Rho-family GTPases are molecular switches that transmit extracellular cues to intracellular signaling pathways. Their regulation is likely to be highly regulated in space and in time, but most of what is known about Rho-family GTPase signaling has been derived from techniques that do not resolve these dimensions. New imaging technologies now allow the visualization of Rho GTPase signaling with high spatio-temporal resolution. This has led to insights that significantly extend classic models and call for a novel conceptual framework. These approaches clearly show three things. First, Rho GTPase signaling dynamics occur on micrometer length scales and subminute timescales. Second, multiple subcellular pools of one given Rho GTPase can operate simultaneously in time and space to regulate a wide variety of morphogenetic events (e.g. leading-edge membrane protrusion, tail retraction, membrane ruffling). These different Rho GTPase subcellular pools might be described as 'spatio-temporal signaling modules' and might involve the specific interaction of one GTPase with different guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. Third, complex spatio-temporal signaling programs that involve precise crosstalk between multiple Rho GTPase signaling modules regulate specific morphogenetic events. The next challenge is to decipher the molecular circuitry underlying this complex spatio-temporal modularity to produce integrated models of Rho GTPase signaling.
Resumo:
Natural regeneration in stone pine (Pinus pinea L.) managed forests in the Spanish Northern Plateau is not achieved successfully under current silviculture practices, constituting a main concern for forest managers. We modelled spatio-temporal features of primary dispersal to test whether (a) present low stand densities constrain natural regeneration success and (b) seed release is a climate-controlled process. The present study is based on data collected from a 6 years seed trap experiment considering different regeneration felling intensities. From a spatial perspective, we attempted alternate established kernels under different data distribution assumptions to fit a spatial model able to predict P. pinea seed rain. Due to P. pinea umbrella-like crown, models were adapted to account for crown effect through correction of distances between potential seed arrival locations and seed sources. In addition, individual tree fecundity was assessed independently from existing models, improving parameter estimation stability. Seed rain simulation enabled to calculate seed dispersal indexes for diverse silvicultural regeneration treatments. The selected spatial model of best fit (Weibull, Poisson assumption) predicted a highly clumped dispersal pattern that resulted in a proportion of gaps where no seed arrival is expected (dispersal limitation) between 0.25 and 0.30 for intermediate intensity regeneration fellings and over 0.50 for intense fellings. To describe the temporal pattern, the proportion of seeds released during monthly intervals was modelled as a function of climate variables – rainfall events – through a linear model that considered temporal autocorrelation, whereas cone opening took place over a temperature threshold. Our findings suggest the application of less intensive regeneration fellings, to be carried out after years of successful seedling establishment and, seasonally, subsequent to the main rainfall period (late fall). This schedule would avoid dispersal limitation and would allow for a complete seed release. These modifications in present silviculture practices would produce a more efficient seed shadow in managed stands.