858 resultados para Sparse Coding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the design of modulation schemes for the physical layer network-coded two way relaying scenario with two phases (Multiple access (MA) Phase and Broadcast (BC) Phase), it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference and all these network coding maps should satisfy a requirement called the exclusive law. In [11] the case in which the end nodes use M-PSK signal sets is extensively studied using Latin Squares. This paper deals with the case in which the end nodes use square M-QAM signal sets. In a fading scenario, for certain channel conditions, termed singular fade states, the MA phase performance is greatly reduced. We show that the square QAM signal sets lead to lesser number of singular fade states compared to PSK signal sets. Because of this, the complexity at the relay is enormously reduced. Moreover lesser number of overhead bits are required in the BC phase. We find the number of singular fade states for PAM and QAM signal sets used at the end nodes. The fade state γejθ = 1 is a singular fade state for M-QAM for all values of M and it is shown that certain block circulant Latin Squares remove this singular fade state. Simulation results are presented to show that QAM signal set perform better than PSK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider nonparametric sequential hypothesis testing when the distribution under null hypothesis is fully known and the alternate hypothesis corresponds to some other unknown distribution. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. These algorithms are motivated from spectrum sensing application in Cognitive Radios. Universal sequential hypothesis testing using Lempel Ziv codes and Krichevsky-Trofimov estimator with Arithmetic Encoder are considered and compared for different distributions. Cooperative spectrum sensing with multiple Cognitive Radios using universal codes is also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. Depending on the signal set used at the end nodes, the minimum distance of the effective constellation seen at the relay becomes zero for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: (i) the ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding called the non-removable singular fade states and (ii) the ones which occur due to the choice of the signal set and whose harmful effects can be removed called the removable singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR-1: the error events associated with the removable and nonremovable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states fall as SNR-2, thereby providing a coding gain over the case when adaptive network coding is not used. Also, it is shown that for a Rician fading channel, the error during the MA phase dominates over the error during the BC phase. Hence, adaptive network coding, which improves the performance during the MA phase provides more gain in a Rician fading scenario than in a Rayleigh fading scenario. Furthermore, it is shown that for large Rician factors, among those removable singular fade states which have the same magnitude, those which have the least absolute value of the phase - ngle alone contribute dominantly to the end-to-end SER and it is sufficient to remove the effect of only such singular fade states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algebraic formulation for linear network coding in acyclic networks with each link having an integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes at any given time instant is a Fq-linear combination of the input symbols across different generations, where Fq denotes the field over which the network operates. We use finite-field discrete Fourier transform (DFT) to convert the output symbols at the sink nodes at any given time instant into a Fq-linear combination of the input symbols generated during the same generation. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (non-transform) approach if and only if there exists a network code satisfying sink demands in the transform approach. Furthermore, assuming time invariant local encoding kernels, we show that the transform method can be employed to achieve half the rate corresponding to the individual source-destination mincut (which are assumed to be equal to 1) for some classes of three-source three-destination multiple unicast network with delays using alignment strategies when the zero-interference condition is not satisfied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tight fusion frames which form optimal packings in Grassmannian manifolds are of interest in signal processing and communication applications. In this paper, we study optimal packings and fusion frames having a specific structure for use in block sparse recovery problems. The paper starts with a sufficient condition for a set of subspaces to be an optimal packing. Further, a method of using optimal Grassmannian frames to construct tight fusion frames which form optimal packings is given. Then, we derive a lower bound on the block coherence of dictionaries used in block sparse recovery. From this result, we conclude that the Grassmannian fusion frames considered in this paper are optimal from the block coherence point of view. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sparse recovery methods utilize the l(p)-normbased regularization in the estimation problem with 0 <= p <= 1. These methods have a better utility when the number of independent measurements are limited in nature, which is a typical case for diffuse optical tomographic image reconstruction problem. These sparse recovery methods, along with an approximation to utilize the l(0)-norm, have been deployed for the reconstruction of diffuse optical images. Their performancewas compared systematically using both numerical and gelatin phantom cases to show that these methods hold promise in improving the reconstructed image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse representation based classification (SRC) is one of the most successful methods that has been developed in recent times for face recognition. Optimal projection for Sparse representation based classification (OPSRC)1] provides a dimensionality reduction map that is supposed to give optimum performance for SRC framework. However, the computational complexity involved in this method is too high. Here, we propose a new projection technique using the data scatter matrix which is computationally superior to the optimal projection method with comparable classification accuracy with respect OPSRC. The performance of the proposed approach is benchmarked with various publicly available face database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new method is proposed to obtain full-diversity, rate-2 (rate of two complex symbols per channel use) space-time block codes (STBCs) that are full-rate for multiple input double output (MIDO) systems. Using this method, rate-2 STBCs for 4 x 2, 6 x 2, 8 x 2, and 12 x 2 systems are constructed and these STBCs are fast ML-decodable, have large coding gains, and STBC-schemes consisting of these STBCs have a non-vanishing determinant (NVD) so that they are DMT-optimal for their respective MIDO systems. It is also shown that the Srinath-Rajan code for the 4 x 2 system, which has the lowest ML-decoding complexity among known rate-2 STBCs for the 4x2 MIDO system with a large coding gain for 4-/16-QAM, has the same algebraic structure as the STBC constructed in this paper for the 4 x 2 system. This also settles in positive a previous conjecture that the STBC-scheme that is based on the Srinath-Rajan code has the NVD property and hence is DMT-optimal for the 4 x 2 system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low complexity joint estimation of synchronization impairments and channel in a single-user MIMO-OFDM system is presented in this paper. Based on a system model that takes into account the effects of synchronization impairments such as carrier frequency offset, sampling frequency offset, and symbol timing error, and channel, a Maximum Likelihood (ML) algorithm for the joint estimation is proposed. To reduce the complexity of ML grid search, the number of received signal samples used for estimation need to be reduced. The conventional channel estimation techniques using Least-Squares (LS) or Maximum a posteriori (MAP) methods fail for the reduced sample under-determined system, which results in poor performance of the joint estimator. The proposed ML algorithm uses Compressed Sensing (CS) based channel estimation method in a sparse fading scenario, where the received samples used for estimation are less than that required for an LS or MAP based estimation. The performance of the estimation method is studied through numerical simulations, and it is observed that CS based joint estimator performs better than LS and MAP based joint estimator. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein functional annotation relies on the identification of accurate relationships, sequence divergence being a key factor. This is especially evident when distant protein relationships are demonstrated only with three-dimensional structures. To address this challenge, we describe a computational approach to purposefully bridge gaps between related protein families through directed design of protein-like ``linker'' sequences. For this, we represented SCOP domain families, integrated with sequence homologues, as multiple profiles and performed HMM-HMM alignments between related domain families. Where convincing alignments were achieved, we applied a roulette wheel-based method to design 3,611,010 protein-like sequences corresponding to 374 SCOP folds. To analyze their ability to link proteins in homology searches, we used 3024 queries to search two databases, one containing only natural sequences and another one additionally containing designed sequences. Our results showed that augmented database searches showed up to 30% improvement in fold coverage for over 74% of the folds, with 52 folds achieving all theoretically possible connections. Although sequences could not be designed between some families, the availability of designed sequences between other families within the fold established the sequence continuum to demonstrate 373 difficult relationships. Ultimately, as a practical and realistic extension, we demonstrate that such protein-like sequences can be ``plugged-into'' routine and generic sequence database searches to empower not only remote homology detection but also fold recognition. Our richly statistically supported findings show that complementary searches in both databases will increase the effectiveness of sequence-based searches in recognizing all homologues sharing a common fold. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale ( measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W m(-2) yr(-1) in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.