984 resultados para Southern water vole
Resumo:
Agricultural water management needs to evolve in view of increased water scarcity, especially when farming and natural protected areas are closely linked. In the study site of Don?ana (southern Spain), water is shared by rice producers and a world heritage biodiversity ecosystem. Our aim is to contribute to defining adaptation strategies that may build resilience to increasing water scarcity and minimize water conflicts among agricultural and natural systems. The analytical framework links a participatory process with quantitative methods to prioritize the adaptation options. Bottom-up proposed adaptation measures are evaluated by a multi-criteria analysis (MCA) that includes both socioeconomic criteria and criteria of the ecosystem services affected by the adaptation options. Criteria weights are estimated by three different methods?analytic hierarchy process, Likert scale and equal weights?that are then compared. Finally, scores from an MCA are input into an optimization model used to determine the optimal land-use distribution in order to maximize utility and land-use diversification according to different scenarios of funds and water availability. While our results show a spectrum of perceptions of priorities among stakeholders, there is one overriding theme that is to define a way to restore part of the rice fields to natural wetlands. These results hold true under the current climate scenario and evenmore so under an increased water scarcity scenario.
Resumo:
This study aims at assessing the socio-economic and environmental effects of different societal and human development scenarios and climate change in the water-scarce southern and eastern Mediterranean. The study develops a two-stage modelling methodology that includes an econometric analysis for the southern and eastern Mediterranean region as a whole and a detailed, integrated socioecological assessment focusing on Jordan, Syria and Morocco. The results show that water resources will be under increasing stress in future years. In spite of country differences, a future path of sustainable development is possible in the region. Water withdrawals could decrease, preserving renewable water resources and reversing the negative effects on agricultural production and rural society. This, however, requires a combination across the region of technical, managerial, economic, social and institutional changes that together foster a substantive structural change. A balanced implementation of water supply-enhancing and demand-management measures along with improved governance are key to attaining a cost-effective sustainable future in which economic growth, a population increase and trade expansion are compatible with the conservation of water resources.
Resumo:
Without doubt, global climate change is directly linked to the anthropogenic release of greenhouse gases such as carbon dioxide (CO2) and methane (UN IPCC-Report 2007). Therefore, research efforts to comprehend the global carbon cycle have increased during the last years. In the context of the observed changes, it is of particular interest to decipher the role of the hydro-, bio- and atmospheres and how the different compartments of the earth system are affected by the increase of atmospheric CO2. Due to its huge carbon inventory, the marine carbon cycle represents the most important component in this respect. Numerous findings suggest that the Southern Ocean plays a key role in terms of oceanic CO2 uptake. However, an exact quantification of such fluxes of material is hard to achieve for large areas, not least on account of the inaccessibility of this remote region. In particular, there exist so far only few accurate data for benthic carbon fluxes. The latter can be derived from high resolution pore water oxygen profiles, as one possible method. However the ex situ flux determinations carried out on sediment cores, tend to suffer from temperature and pressure artefacts. Alternatively, oxygen microprofiles can be measured in situ, i.e. at the seafloor. Until now, no such data have been published for the Southern Ocean. During the Antarctic Expedition ANT-XXI/4, within the framework of this thesis, in situ and ex situ oxygen profiles were measured and used to derive benthic organic carbon fluxes. Having both types of measurements from the same locations, it was possible to establish a depth-related correction function which was applied subsequently to revise published and additional unpublished carbon fluxes to the seafloor. This resulted in a consistent data base of benthic carbon inputs covering many important sub-regions of the Southern Ocean including the Amundsen and Bellingshausen Seas (southern Pacific), Scotia and Weddell Seas (southern South Atlantic) as well as the Crozet Basin (southern Indian Ocean). Including additional locations on the Antarctic Shelf, there are now 134 new and revised measurement locations, covering almost 180° of the Southern Ocean, for which benthic organic carbon fluxes and sedimentary oxygen penetration depth values are available. Further, benthic carbon fluxes were empirically related to dominant diatom distributions in surface sediments as well as to long-term remotely sensed chlorophyll-a estimates. The comparison of these results with benthic carbon fluxes of the entire Atlantic Ocean reveals significantly higher export efficiencies for the Southern Ocean than have previously been assumed, especially for the area of the opal belt.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 96-97.
Resumo:
Mode of access: Internet.
Resumo:
First report published 1932 presents data to Jan. 1932.