987 resultados para Southern Oscillation Index
Resumo:
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.
Resumo:
This study presents a proxy-based, quantitative reconstruction of cold-season (mean October to May, TOct–May) air temperatures covering nearly the entire last millennium (AD 1060–2003, some hiatuses). The reconstruction was based on subfossil chrysophyte stomatocyst remains in the varved sediments of high-Alpine Lake Silvaplana, eastern Swiss Alps (46°27’N, 9°48′W, 1791 m a.s.l.). Previous studies have demonstrated the reliability of this proxy by comparison to meteorological data. Cold-season air temperatures could therefore be reconstructed quantitatively, at a high resolution (5-yr) and with high chronological accuracy. Spatial correlation analysis suggests that the reconstruction reflects cold season climate variability over the high- Alpine region and substantial parts of central and western Europe. Cold-season temperatures were characterized by a relatively stable first part of the millennium until AD 1440 (2σ of 5-yr mean values = 0.7 °C) and highly variable TOct–May after that (AD 1440–1900, 2σ of 5-yr mean values = 1.3 °C). Recent decades (AD, 1991-present) were unusually warm in the context of the last millennium (exceeding the 2σ-range of the mean decadal TOct–May) but this warmth was not unprecedented. The coolest decades occurred from AD 1510–1520 and AD 1880–1890. The timing of extremely warm and cold decades is generally in good agreement with documentary data representing Switzerland and central European lowlands. The transition from relatively stable to highly variable TOct–May coincided with large changes in atmospheric circulation patterns in the North Atlantic region. Comparison of reconstructed cold season temperatures to the North Atlantic Oscillation index (NAO) during the past 1000 years showed that the relatively stable and warm conditions at the study site until AD 1440 coincided with a persistent positive mode of the NAO. We propose that the transition to large TOct–May variability around AD 1440 was linked to the subsequent absence of this persistent zonal flow pattern, which would allow other climatic drivers to gain importance in the study area. From AD 1440–1900, the similarity of reconstructed TOct–May to reconstructed air pressure in the Siberian High suggests a relatively strong influence of continental anticyclonic systems on Alpine cold season climate parameters during periods when westerly airflow was subdued. A more continental type of atmospheric circulation thus seems to be characteristic for the Little Ice Age in Europe. Comparison of Toct–May to summer temperature reconstructions from the same study site shows that, as expected, summer and cold season temperature trends and variability differed completely throughout nearly the entire last 1000 years. Since AD 1980, however, summer and cold season temperatures show a simultaneous, strong increase, which is unprecedented in the context of the last millennium. We suggest that the most likely explanation for this recent trend is anthropogenic greenhouse gas (GHG) forcing.
Resumo:
The study forest regulates nutrient cycles as a supporting ecosystem service mainly via retention in the biosphere and the soil organic layer. How tight the nutrient cycles are depends on environmental conditions. In this chapter, we focus on the roles of (1) deposition from the atmosphere, (2) soil moisture regime, and (3) conversion to pasture in the nutrient cycle. Between 1998 and 2010, there were a seasonal deposition of salpetric acid, an episodic deposition of Ca and Mg from Sahara dusts, and a continuous increase in reactive N inputs related to Amazonian forest fires, the El Niño Southern Oscillation cycle, and the economic development, respectively. Simultaneously, soils became increasingly drier enhancing nutrient release by mineralization. An increasing number of rain storms could considerably increase the export of N and base metals (K, Ca, Mg) via fast surface-near lateral transport in soil. Land-use change from forest to pasture introduces alkaline ashes and grass-derived organic matter. The resulting increases in soil pH and nutrient and substrate supply increase nutrient cycling rates because of enhanced microbial activity.
Resumo:
Tropical explosive volcanism is one of the most important natural factors that significantly impact the climate system and the carbon cycle on annual to multi-decadal time scales. The three largest explosive eruptions in the last 50�years�Agung, El Chichón, and Pinatubo�occurred in spring/summer in conjunction with El Niño events and left distinct negative signals in the observational temperature and CO2 records. However, confounding factors such as seasonal variability and El Niño-Southern Oscillation (ENSO) may obscure the forcing-response relationship. We determine for the first time the extent to which initial conditions, i.e., season and phase of the ENSO, and internal variability influence the coupled climate and carbon cycle response to volcanic forcing and how this affects estimates of the terrestrial and oceanic carbon sinks. Ensemble simulations with the Earth System Model (Climate System Model 1.4-carbon) predict that the atmospheric CO2 response is �60 larger when a volcanic eruption occurs during El Niño and in winter than during La Niña conditions. Our simulations suggest that the Pinatubo eruption contributed 11�±�6 to the 25�Pg terrestrial carbon sink inferred over the decade 1990�1999 and �2�±�1 to the 22�Pg oceanic carbon sink. In contrast to recent claims, trends in the airborne fraction of anthropogenic carbon cannot be detected when accounting for the decadal-scale influence of explosive volcanism and related uncertainties. Our results highlight the importance of considering the role of natural variability in the carbon cycle for interpretation of observations and for data-model intercomparison.
Resumo:
Here we present new isotope records derived from snow samples from the McMurdo Dry Valleys, Antarctica and re-analysis data of the European Centre for Medium-Range Weather Forecasts (ERA-40) to explain the connection between the warming of the Pacific sector of the Southern Ocean [Jacka and Budd, 1998; Jacobs et al., 2002] and the current cooling of the terrestrial Ross Sea region [Doran et al., 2002a]. Our analysis confirms previous findings that the warming is linked to the El Nino Southern Oscillation (ENSO) [Kwok and Comiso, 2002a, 2002b; Carleton, 2003; Ribera and Mann, 2003; Turner, 2004], and provides new evidence that the terrestrial cooling is caused by a simultaneous ENSO driven change in atmospheric circulation, sourced in the Amundsen Sea and West Antarctica.
Resumo:
In this paper a detailed record of major ions from a 20 in deep firn core from Amundsenisen, western Dronning Maud Land, Antarctica, is presented. The core was drilled at 75degreesS, 2degrees E (2900 m.a.s.l.) during austral summer 1991/92. The following ions were measured at 3 cm resolution: Na+, Mg2+, Ca2+, Cl-, NO3-, SO42- and CH3SO3H (MSA). The core was dated back to 1865 using a combination of chemical records and volcanic reference horizons. The volcanic eruptions identified in this core are Mount Ngauruhoe, New Zealand (1974-75), Mount Agung, Indonesia (1963), Azul, Argentina (1932). and a broad peak that corresponds in time to Tarawera, New Zealand (1886), Falcon Island, South Shetlands, Southern Ocean (1885), and Krakatau, Indonesia (1883). There are no trends in any of the ion records, but the annual to decadal changes are large. The mean concentrations of the measured ions are in agreement with those from other high-altitude cores from the Antarctic plateau. At this core site there may be a correspondence between peaks in the MSA record and major El Nino-Southern Oscillation events.
Resumo:
An annually dated ice core recovered from South Pole (2850 in a.s.l.) in 1995, that covers the period 1487-1992, was analyzed for the marine biogenic sulfur species methanesulfonate (MS). Empirical orthogonal function analysis is used to calibrate the high-resolution MS series with associated environmental series for the period of overlap (1973-92). Utilizing this calibration we present a similar to500 year long proxy record of the polar expression of the El Nino-Southern Oscillation (ENSO) and southeastern Pacific sea-ice extent variations. These records reveal short-term periods of increased (1800-50, 1900-40) and decreased sea-ice extent (1550-1610., 1660-1710, 1760-1800). In general, increased (decreased) sea-ice extent is associated with a higher (lower) frequency of El Nino events.
Resumo:
Numerous mesoscale eddies occur each year in the South China Sea (SCS), but their statistical characteristics are still not well documented. A Pacific basin-wide three dimensional physical-biogeochemical model has been developed and the result in the SCS subdomain is used to quantify the eddy activities during the period of 1993-2007. The modeled results are compared with a merged and gridded satellite product of sea level anomaly by using the same eddy identification and tracking method. On average, there are about 32.9 +/- 2.4 eddies predicted by the model and 32.8 +/- 3.4 eddies observed by satellite each year, and about 52% of them are cyclonic eddies. The radius of these eddies ranges from about 46.5 to 223.5 km, with a mean value of 87.4 km. More than 70% of the eddies have a radius smaller than 100 km. The mean area covered by these eddies each year is around 160,170 km(2), equivalent to 9.8% of the SCS area with water depths greater than 1000 m. Linear relationships are found between eddy lifetime and eddy magnitude and between eddy vertical extent and eddy magnitude, showing that strong eddies usually last longer and penetrate deeper than weak ones. Interannual variations in eddy numbers and the total eddy-occupied area indicate that eddy activities in the SCS do not directly correspond to the El Nino-Southern Oscillation events. The wind stress curls are thought to be an important but not the only mechanism of eddy genesis in the SCS.
Resumo:
In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.
Resumo:
The West Antarctic ice sheet is particularly sensitive to global warming and its evolution and impact on global climate over the next few decades remains difficult to predict. In this context, investigating past sea ice conditions around Antarctica is of primary importance. Here, we document changes in sea ice presence, upper water column temperatures (0-200 m) and primary productivity over the last 9000 yr BP (before present) in the western Antarctic Peninsula (WAP) margin from a sedimentary core collected in the Palmer Deep Basin. Employing a multi-proxy approach, based on the combination of two biomarkers proxies (highly branched isoprenoid (HBI) alkenes for sea ice and TEXL86 for temperature) and micropaleontological data (diatom assemblages), we derived new Holocene records of sea ice conditions and upper water column temperatures. The early Holocene (9000-7000 yr BP) was characterized by a cooling phase with a short sea ice season. During the mid-Holocene (~7000-3800 yr BP), local climate evolved towards slightly colder conditions and a prominent extension of the sea ice season occurred, promoting a favorable environment for intensive diatom growth. The late Holocene (the last ~2100 yr) was characterized by warmer temperatures and increased sea ice presence, accompanied by reduced local primary productivity, likely in response to a shorter growing season compared to the early or mid-Holocene. The gradual increase in annual sea ice duration over the last 7000 yr might have been influenced by decreasing mean annual and spring insolation, despite increasing summer insolation. We postulate that, in addition to precessional changes in insolation, seasonal variability, via changes in the strength of the circumpolar Westerlies and upwelling activity, was further amplified by the increasing frequency/amplitude of the El Nino-Southern Oscillation (ENSO). However, between 3800 and 2100 yr BP, the lack of correlation between ENSO and climate variability in the WAP suggests that other climatic factors might have been more important in controlling WAP climate at this time.
Resumo:
The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.