996 resultados para Sorghum bicolor (L.) Moench
Resumo:
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions. Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r = -0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system. Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period. Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely. Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years) to investigate the effect of oat (Avena sativa L.) cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.). The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.
Resumo:
Agronomic biomass yields of forage sorghum BRS 655 presented similar results to other energy crops, producing 9 to 12.6 tons/ha (dry mass) of sorghum straw. The objective of this study was to evaluate the lignocellulosic part of this cultivar in terms of its potential in the different unit processes in the production of cellulosic ethanol, measuring the effects of pretreatment and enzymatic hydrolysis. Three types of pre-treatments for two reaction times were conducted to evaluate the characteristics of the pulp for subsequent saccharification. The pulp pretreated by alkali, and by acid followed by delignification, attained hydrolysis rates of over 90%.
Resumo:
Sorghum (Sorghum bicolor L.) plants were grown in split pots in three Rothamsted soils with different soil pH values and phosphorus (P) contents. Ammonium addition resulted in higher plant dry weight and P content than comparable nitrate treatments. The pH of soils in the rhizosphere (0.51-mm average thickness) differed from the bulk soil depending on nitrogen (N) form and level. Ammonium application resulted in a pH decrease, but nitrate application slightly increased pH. To examine the effect of rhizosphere acidification on mobilization of phosphate, 0.5 M NaHCO3 extractable phosphate was measured. The lowering rhizosphere pH enhanced the solubility of P in the soil and maybe availability of P to plants. Rhizosphere-P depletion increased with increasing ammonium supply, but when N was supplied as nitrate, P depletion was not related to increasing nitrate supply. Low P status Hoosfield soils developed mycorrhizal infection., and as a result, P inflow was increased. Geescroft soil, which initially had a high P status, did not develop mycorrhizal infection, and P inflow was much smaller and was unaffected by N treatments. Therefore, plant growth and P uptake were influenced by both rhizosphere pH and indigenous mycorrhizal infection.
Resumo:
A ocorrência de sementes duras em quiabeiro (Abelmoschus esculentus (L.) Moench) foi estudada em função da colheita única dos frutos na senescência das plantas ou da colheita periódica dos frutos no estádio de maturação morfológica. As cultivares utilizadas foram Amarelinho, Santa Cruz-47 e Campinas-2 IAC 4076 e os frutos foram separados em aqueles provenientes da haste principal e os oriundos dos ramos laterais. A porcentagem de sementes duras foi avaliada por meio do teste padrão de germinação e os dados obtidos permitiram verificar que o método de colheita única aumentou a ocorrência de sementes duras e, pelo fato de Amarelinho não apresentar essa caracterÃstica, esse método pode ser utilizado para a mesma, com redução nos custos de produção de sementes sem afetar sua qualidade.
Resumo:
Field cage studies were conducted to describe the relationship between the percentage of Lysiphlebus testaceipes (Cresson) parasitism (as measured by aphid mummies) and densities of greenbug, Schizaphis graminum Rondani, on grain sorghum, Sorghum bicolor L. In 1993 and 1994, a biotype E-susceptible grain sorghum hybrid was grown in field cages and L. testaceipes adults were released after each plant was infested with 20 biotype E greenbugs. The release rates were 0, 0.5, 1.0, and 2.0 wasps per plant in 1993, and 0, 0.16, 0.33, and 0.5 wasps per plant in 1994. Greenbugs and mummies were counted 1-2 times a week on all leaves of 2-4 randomly selected plants per cage. A release rate of 0.33-0.5 wasps per plant infested with 20 greenbugs maximized the number of mummies produced and prevented the greenbugs from reaching an economic threshold of 1,000 greenbugs per plant. Peak numbers of mummies occurred ≈400-500 DD (10°C base) after the initial wasp release. Regression analyses showed that the greenbug population started decreasing when the percentage of parasitism (as measured by mummies) reached 20-30 %. Greenbugs in the absence of wasps significantly reduced yield in 1994, but not in 1993.
Resumo:
RNA editing and cytoplasmic male sterility are two important phenomena in higher plant mitochondria. To determine whether correlations might exist between the two, RNA editing in different tissues of Sorghum bicolor was compared employing reverse transcription–PCR and subsequent sequence analysis. In etiolated shoots, RNA editing of transcripts of plant mitochondrial atp6, atp9, nad3, nad4, and rps12 genes was identical among fertile or cytoplasmic male sterile plants. We then established a protocol for mitochondrial RNA isolation from plant anthers and pollen to include in these studies. Whereas RNA editing of atp9, nad3, nad4, and rps12 transcripts in anthers was similar to etiolated shoots, mitochondrial atp6 RNA editing was strongly reduced in anthers of the A3Tx398 male sterile line of S. bicolor. atp6 transcripts of wheat and selected plastid transcripts in S. bicolor showed normal RNA editing, indicating that loss of atp6 RNA editing is specific for cytoplasmic male sterility S. bicolor mitochondria. Restoration of fertility in F1 and F2 lines correlated with an increase in RNA editing of atp6 transcripts. Our data suggest that loss of atp6 RNA editing contributes to or causes cytoplasmic male sterility in S. bicolor. Further analysis of the mechanism of cell type-specific loss of atp6 RNA editing activity may advance our understanding of the mechanism of RNA editing.
Resumo:
Accumulation of red phlobaphene pigments in sorghum grain pericarp is under the control of the Y gene. A mutable allele of Y, designated as y-cs (y-candystripe), produces a variegated pericarp phenotype. Using probes from the maize p1 gene that cross-hybridize with the sorghum Y gene, we isolated the y-cs allele containing a large insertion element. Our results show that the Y gene is a member of the MYB-transcription factor family. The insertion element, named Candystripe1 (Cs1), is present in the second intron of the Y gene and shares features of the CACTA superfamily of transposons. Cs1 is 23,018 bp in size and is bordered by 20-bp terminal inverted repeat sequences. It generated a 3-bp target site duplication upon insertion within the Y gene and excised from y-cs, leaving a 2-bp footprint in two cases analyzed. Reinsertion of the excised copy of Cs1 was identified by Southern hybridization in the genome of each of seven red pericarp revertant lines tested. Cs1 is the first active transposable element isolated from sorghum. Our analysis suggests that Cs1-homologous sequences are present in low copy number in sorghum and other grasses, including sudangrass, maize, rice, teosinte, and sugarcane. The low copy number and high transposition frequency of Cs1 imply that this transposon could prove to be an efficient gene isolation tool in sorghum.
Resumo:
Many major weeds rely upon vegetative dispersal by rhizomes and seed dispersal by "shattering" of the mature inflorescence. We report molecular analysis of these traits in a cross between cultivated and wild species of Sorghum that are the probable progenitors of the major weed "johnsongrass." By restriction fragment length polymorphism mapping, variation in the number of rhizomes producing above-ground shoots was associated with three quantitative trait loci (QTLs). Variation in regrowth (ratooning) after overwintering was associated with QTLs accounting for additional rhizomatous growth and with QTLs influencing tillering. Vegetative buds that become rhizomes are similar to those that become tillers--one QTL appears to influence the number of such vegetative buds available, and additional independent genes determine whether individual buds differentiate into tillers or rhizomes. DNA markers described herein facilitate cloning of genes associated with weediness, comparative study of rhizomatousness in other Poaceae, and assessment of gene flow between cultivated and weedy sorghums--a risk that constrains improvement of sorghum through biotechnology. Cloning of "weediness" genes may create opportunities for plant growth regulation, in suppressing propagation of weeds and enhancing productivity of major forage, turf, and "ratoon" crops.
Resumo:
The cotton bollworm (Helicoverpa armigera) prefers the common sowthistle (Sonchus oleraceus L.) to cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) for oviposition in the field in Australia. Using the common sowthistle and cotton as host plants, we carried out this study to evaluate genetic variation in both oviposition preference and larval growth and genetic correlation between maternal preference and larval performance. There was a significant genetic component of phenotypic variation in both characters, and the heritability of oviposition preference was estimated as 0.602. Helicoverpa armigera larvae survived slightly better and grew significantly faster on common sowthistle than on cotton, but genetic correlation between maternal preference and larval growth performance was not detectable. Instead, larval growth performance on the two hosts changed with families, which renders the interaction between family and host plant significant. As a result, the genetic correlation between mean values of larval growth across the two host species was not different from zero. These results are discussed in the context of the relationship between H. armigera and the common sowthistle and the polyphagous behaviour of this insect in general.
Resumo:
O trabalho teve como objetivo avaliar a influência de resÃduos de cinco cultivares de sorgo (Sorghum bicolor L.): CMS XS 376, CMS XS 365, BR 304, BR 700 e CMS XS 755 no crescimento e no desenvolvimento da soja. Esses resÃduos foram colhidos em três estádios do desenvolvimento reprodutivo do sorgo: florescimento, enchimento de grãos e maturação. Os tratamentos estudados constaram da deposição desses resÃduos na superfÃcie do solo ou da sua total incorporação na proporção de 4 g kg-1 de matéria seca no solo (LEd, fase cerrado). Nos tratamentos com planta, mantiveram-se três plantas de soja (cv. Doko) em vasos com capacidade para 3 kg de solo. Nos tratamentos sem planta, o solo foi amostrado semanalmente para avaliação das formas de N. Após a colheita da soja, amostras de planta e de solo, de cada tratamento, foram retiradas para determinar a absorção total de N e a influência desses resÃduos no N disponÃvel extraÃdo com KCl 2 mol L-1. Os resultados revelaram que alguns resÃduos culturais de sorgo afetaram, independentemente do estádio de colheita, o desenvolvimento da soja, a absorção de N, o peso de nódulos e a biomassa microbiana do solo. Tais efeitos também foram dependentes do método de incorporação do resÃduo. O teor de carbono imobilizado pela biomassa foi maior quando os resÃduos de sorgo foram distribuÃdos na superfÃcie do solo.
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
O Sorghum bicolor (L.) Moech é uma importante forrageira de alta produção, que cresce no cenário brasileiro ainda de forma lenta em substituição ao cultivo de milho safrinha. A cultura do sorgo seria alternativa no período da seca na produção de silagem para o período das águas; contudo, o crescimento e desenvolvimento das plantas pode ser influenciado por alterações nos atributos do solo, como textura, porosidade e estrutura do solo. O objetivo deste trabalho foi analisar e caracterizar a dependência e variabilidade espacial entre atributos do solo e a cultura do sorgo forrageiro, em um Planossolo Hidromórfico no ecótono Cerrado-Pantanal. Para tanto, estimaram-se a produtividade de matérias verde e seca de forragem (MVF e MSF) de sorgo forrageiro e os atributos do solo, como macroporosidade (Ma), microporosidade (Mi), porosidade total (Pt), diâmetro médio geométrico, diâmetro médio ponderado, índice de estabilidade de agregados (IEA) e teor de carbono orgânico total do solo (COT), em duas profundidades: 1 (0,00-0,10 m) e 2 (0,10-0,20 m). Em relação à malha geoestatística, foram realizadas 50 coletas de atributos de planta e solo em 40 ha. Isso possibilitou detectar a elevada variabilidade espacial dos atributos de planta (MVF e MSF) e também os atributos do solo que mais variaram espacialmente. Com relação às variáveis que apresentaram dependência espacial, o coeficiente de determinação (r2) decresceu na seguinte ordem: IEA1, silte2, Ma1, Pt1, areia2, silte1, MSF, argila1, MVF e IEA2. Com isso, verificou-se que IEA1 apresentou o melhor ajuste semivariográfico (r2 = 0,926), com alcance de 677,0 m, e o avaliador da dependência espacial (50,6 %) moderado. O silte1, porém, evidenciou o menor alcance (111,0 m) e, assim, recomenda-se que em estudos posteriores o alcance mínimo a ser adotado, para esse tipo de avaliação, não deve ser inferior a esse valor em Planossolo Hidromórfico sob preparo convencional. A correlação linear foi significativa e elevada para MVF e MSF, ao passo que entre atributos de planta versus solo houve correlações positiva e negativa. No âmbito da cokrigagem, a argila1 foi o melhor indicador para estimar a variabilidade espacial da produtividade de massa seca de forragem de sorgo de correlação significativa e negativa (r = -0,292*).
Resumo:
Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [gamma-(32)P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.