981 resultados para Solvents.
Resumo:
"A continuation of the work of Jones and Uhler on the absorption spectra of solutions (Carnegie publication no. 60)" cf. Pref.
Resumo:
In this study, we investigate the fabrication of 3D porous poly(lactic-co-glycolic acid) (PLGA) scaffolds using the thermally-induced phase separation technique. The current study focuses on the selection of alternative solvents for this process using a number of criteria, including predicted solubility. toxicity, removability and processability. Solvents were removed via either vacuum freeze-drying or leaching, depending on their physical properties. The residual solvent was tested using gas chromatography-mass spectrometry. A large range of porous, highly interconnected scaffold architectures with tunable pore size and alignment was obtained, including combined macro- and microporous structures and an entirely novel 'porous-fibre' structure. The morphological features of the most promising poly(lactic-co-glycolic acid) scaffolds were analysed via scanning electron microscopy and X-ray micro-computed tomography in both two and three dimensions. The Young's moduli of the scaffolds under conditions of temperature, pH and ionic strength similar to those found in the body were tested and were found to be highly dependent on the architectures.
Resumo:
The aim of this research project was to identify the factors affecting the porcine pancreatic lipase (PPL.)-catalysed polytransesterification of a diester and a diol in organic solvents. It was hoped that by modifying reaction conditions a commercially acceptable polymer molecular weight (Mn) of 20,000 daltons might be attained. Exploratory investigations were carried out using 1,4-butanediolibis(2,2,2- trichloroethyl) adipate and glutarate systems in diethyl ether, with and without molecular sieves. It was found that molecular sieves promoted the reaction by reducing hydrolysis of the ester end-groups, resulting in polymer molecular weights between 1.2 and 2.2 times greater than those obtainable without molecular sieves. Investigations were then concentrated on the PPL-catalysed polytransesterification of 1,4-butanediol with divinyl adipate. The particular advantage of this system is that the reaction is irreversible. The effects of varying substrate concentration, mass of drying agent, reaction solvent, reaction temperature, mass of enzyme and also enzyme immobilisation on the 1,4-butanediolidivinyl adipate system were investigated. The highest molecular weight polymer obtained for the PPL-catalysed polytransesterification of 1,4-butanedial with divinyl adipate in diethyl ether was Mn -8,000. In higher boiling ether solvents molecular weights as high as Mn -9,200 were obtained for this system at elevated temperatures. It was found that the major factor limiting polymerisation was the low solubility of the polymer in the solvent which resulted in precipitation of the polymer onto the surface of the enzyme.
Resumo:
This work describes how the physical properties of a solvent affect the design variables of a physical gas absorption process. The role of every property in determining the capital and the running cost of a process has been specified. Direct mathematical relationships have been formulated between every item of capital or running cost and the properties which are related to that item. The accuracy of the equations formulated has been checked by comparing their outcome with some actual design data. A good agreement has been found. The equations formulated may be used to evaluate on the basis of economics any suggested new solvents. A group of solvents were selected for evaluation. Their physical properties were estimated or collected as experimental data. The selected ones include three important solvents, the first is polyethylene glycol dimethyl ether (Selexol) which represents the currently most successful one, The other two solvents are acetonyl acetone (B2) and n-formyl morpholine which have been suggested previously as potential credible alternatives to the current ones. The important characteristics of: acetonyl acetone are its high solubility and its low viscosity, while the n-formyl morpholine is characterised by its low vapour pressure and its high selectivity. It was found that acetonyl acetone (B2) is the most attractive solvent for commercial applications particularly for process configurations that:include heat exchangers and strippers. The effect of the process configuration on the selected solvent was investigated in detail and it was found that there is no universal solvent which is the best for any process configuration, but that there is a best solvent for a given process configuration. In previous work, acetonyl acetone was suggested as a commercially promising physical solvent. That suggestion was not fully based on experimental measurement of all the physical properties. The viscosity of acetonyl acetone and its solubility at 1 atm were measured but the vapour pressure and the solubility of C02 and CH4 at high pressure were predicted. In this work, the solubilities of C02, CH4 and C3H8 in acetenyl acetone were measured for a partial pressure range of (2 ~ 22) bar at 25°C, The vapour pressure of this solvent was also measured, and the Antoine equation was formulated from tbe experimental data. The experimental data were found to be not In agreement with the predicted ones, so acetonyl acetone was re-evaluated according to the experimental data. It was found that this solvent can be recommended for further trials in a pilot plant study or for small scale commercial units.
Resumo:
In this study we investigate salt effects on bundle formation of carbon nanotubes (CNTs) dispersed in an organic solvent, N-methyl-2-pyrrolidone (NMP). Addition of NaI salt leads to self-assembly of CNTs into well-recognizable bundles. It is possible to control the size of the CNT bundles by varying the salt concentration. © the Owner Societies 2011.
Resumo:
The solubility of telmisartan (form A) in nine organic solvents (chloroform, dichloromethane, ethanol, toluene, benzene, 2-propanol, ethyl acetate, methanol and acetone) was determined by a laser monitoring technique at temperatures from 277.85 to 338.35 K. The solubility of telmisartan (form A) in all of the nine solvents increased with temperature as did the rates at which the solubility increased except in chloroform and dichloromethane. The mole fraction solubility in chloroform is higher than that in dichloromethane, which are both one order of magnitude higher than those in the other seven solvents at the experimental temperatures. The solubility data were correlated with the modified Apelblat equation and λh equations. The results show that the λh equation is in better agreement with the experimental data than the Apelblat equation. The relative root mean square deviations (σ) of the λh equation are in the range from 0.004 to 0.45 %. The dissolution enthalpies, entropies and Gibbs energies of telmisartan in these solvents were estimated by the Van’t Hoff equation and the Gibbs equation. The melting point and the fusion enthalpy of telmisartan were determined by differential scanning calorimetry.
Resumo:
Abstract The development of high voltage electrolytes is one of the key aspects for increasing both energy and power density of electrochemical double layer capacitors (EDLCs). The usage of blends of ionic liquids and organic solvents has been considered as a feasible strategy since these electrolytes combine high usable voltages and good transport properties at the same time. In this work, the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was mixed with two nitrile-based organic solvents, namely butyronitrile and adiponitrile, and the resulting blends were investigated regarding their usage in electrochemical double layer capacitors. Both blends have a high electrochemical stability, which was confirmed by prolonged float tests at 3.2 V, as well as, good transport properties. In fact, the butyronitrile blend reaches a conductivity of 17.14 mS·cm−1 and a viscosity of 2.46 mPa·s at 20 °C, which is better than the state-of-the-art electrolyte (1 mol·dm−3 of tetraethylammonium tetrafluoroborate in propylene carbonate).
Resumo:
Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.
Resumo:
The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace.
Resumo:
The main objectives of this work are the measurement of terpenes solubility in water at different temperatures, and the formulation of Deep Eutectic Solvents based on choline chloride and polycarboxylic acids, that can be used as hydrotropes of aqueous solutions in terpenes, replacing conventional organic solvents. In this work a new experimental methodology was implemented, using dialysis membranes, for the measurement of terpenes solubility in water. Concerning the deep eutectic diagrams formulation, the determination of the melting points of the eutectic mixtures was performed using a visual method. The method used for determining solubilities was previously validated using a well-studied model compound, toluene. The experimental results of terpenes solubilities in water resulted in a very satisfactory coefficients of variation, always below 6%. The experimental solubility data were analysed and the temperature dependence is also studied in a thermodynamic perspective. The compound with the largest solubility dependence with the temperature is geraniol, while thymol presents the smallest. The phase diagrams of DES formulated were quite satisfactory, presenting always eutectic points below to 373.15 K. For some compositions, the systems composed by choline chloride and lactic, or malonic, or myristic acid were liquid at room temperature. In the case of monocarboxylic acids, eutectic is formed at 60% mol of the acid, to dicarboxylic acid is formed at 50% mol of the acid and for tricarboxylic acid these point is formed at 30% mol of the acid. In the future, it will be important to study the effect of DES as hydrotropes in aqueous solutions of terpenes. Furthermore, it would be interesting to study more terpenes in order to assess the effect of the size of the alkyl chain and the structures of the compounds.
Resumo:
Ionic liquids (ILs) have attracted great attention, from both industry and academia, as alternative fluids for very different types of applications. The large number of cations and anions allow a wide range of physical and chemical characteristics to be designed. However, the exhaustive measurement of all these systems is impractical, thus requiring the use of a predictive model for their study. In this work, the predictive capability of the conductor-like screening model for real solvents (COSMO-RS), a model based on unimolecular quantum chemistry calculations, was evaluated for the prediction water activity coefficient at infinite dilution, gamma(infinity)(w), in several classes of ILs. A critical evaluation of the experimental and predicted data using COSMO-RS was carried out. The global average relative deviation was found to be 27.2%, indicating that the model presents a satisfactory prediction ability to estimate gamma(infinity)(w) in a broad range of ILs. The results also showed that the basicity of the ILs anions plays an important role in their interaction with water, and it considerably determines the enthalpic behavior of the binary mixtures composed by Its and water. Concerning the cation effect, it is possible to state that generally gamma(infinity)(w) increases with the cation size, but it is shown that the cation-anion interaction strength is also important and is strongly correlated to the anion ability to interact with water. The results here reported are relevant in the understanding of ILs-water interactions and the impact of the various structural features of its on the gamma(infinity)(w) as these allow the development of guidelines for the choice of the most suitable lLs with enhanced interaction with water.
Resumo:
Among different classes of ionic liquids (ILs), those with cyano-based anions have been of special interest due to their low viscosity and enhanced solvation ability for a large variety of compounds. Experimental results from this work reveal that the solubility of glucose in some of these ionic liquids may be higher than in water – a well-known solvent with enhanced capacity to dissolve mono- and disaccharides. This raises questions on the ability of cyano groups to establish strong hydrogen bonds with carbohydrates and on the optimal number of cyano groups at the IL anion that maximizes the solubility of glucose. In addition to experimental solubility data, these questions are addressed in this study using a combination of density functional theory (DFT) and molecular dynamics (MD) simulations. Through the calculation of the number of hydrogen bonds, coordination numbers, energies of interaction and radial and spatial distribution functions, it was possible to explain the experimental results and to show that the ability to favorably interact with glucose is driven by the polarity of each IL anion, with the optimal anion being dicyanamide.
Resumo:
© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/