923 resultados para Solar radiation sensors
Resumo:
The analytical solution to the one-dimensional absorption–conduction heat transfer problem inside a single glass pane is presented, which correctly takes into account all the relevant physical phenomena: the appearance of multiple reflections, the spectral distribution of solar radiation, the spectral dependence of optical properties, the presence of possible coatings, the non-uniform nature of radiation absorption, and the diffusion of heat by conduction across the glass pane. Additionally to the well established and known direct absorptance αe, the derived solution introduces a new spectral quantity called direct absorptance moment βe, that indicates where in the glass pane is the absorption of radiation actually taking place. The theoretical and numerical comparison of the derived solution with existing approximate thermal models for the absorption–conduction problem reveals that the latter ones work best for low-absorbing uncoated single glass panes, something not necessarily fulfilled by modern glazings.
Resumo:
Solar radiation is the most important source of renewable energy in the planet; it's important to solar engineers, designers and architects, and it's also fundamental for efficiently determining irrigation water needs and potential yield of crops, among others. Complete and accurate solar radiation data at a specific region are indispensable. For locations where measured values are not available, several models have been developed to estimate solar radiation. The objective of this paper was to calibrate, validate and compare five representative models to predict global solar radiation, adjusting the empirical coefficients to increase the local applicability and to develop a linear model. All models were based on easily available meteorological variables, without sunshine hours as input, and were used to estimate the daily solar radiation at Cañada de Luque (Córdoba, Argentina). As validation, measured and estimated solar radiation data were analyzed using several statistic coefficients. The results showed that all the analyzed models were robust and accurate (R2 and RMSE values between 0.87 to 0.89 and 2.05 to 2.14, respectively), so global radiation can be estimated properly with easily available meteorological variables when only temperature data are available. Hargreaves-Samani, Allen and Bristow-Campbell models could be used with typical values to estimate solar radiation while Samani and Almorox models should be applied with calibrated coefficients. Although a new linear model presented the smallest R2 value (R2 = 0.87), it could be considered useful for its easy application. The daily global solar radiation values produced for these models can be used to estimate missing daily values, when only temperature data are available, and in hydrologic or agricultural applications.
Resumo:
The solaR package allows for reproducible research both for photovoltaics (PV) systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems. It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems. Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
"This translation was prepared under the auspices of the Liaison Office, Technical Information Center, Wright-Patterson AFB, Ohio."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
A mathematical model has been developed for predicting the spectral distribution of solar radiation incident on a horizontal surface. The solar spectrum in the wavelength range 0.29 to 4.0 micrometers has been divided in 144 intervals. Two variables in the model are the atmospheric water vapour content and atmospheric turbidity. After allowing for absorption and scattering in the atmosphere, the spectral intensity of direct and diffuse components of radiation are computed. When the predicted radiation levels are compared with the measured values for the total radiation and the values with glass filters RG715, RG630 and OG530, a close agreement (± 5%) has been achieved under clear sky conditions. A solar radiation measuring facility, close to the centre of Birmingham, has been set up utilising a microcomputer based data logging system. A suite of computer programs in the BASIC programming language has been developed and extensively tested for solar radiation data, logging, analysis and plotting. Two commonly used instruments, the Eppley PSP pyranometer and the Kipp and Zonen CM5 pyranometer, have been compared under different experimental conditions. Three models for computing the inclined plane irradiation, using total and diffuse radiation on a horizontal surface, have been tested for Birmingham. The anisotropic-alI-sky model, proposed by Klucher, provides a good agreement between the measured and the predicted radiation levels. Measurements of solar spectral distribution, using glass filters, are also reported for a number of inclines facing South.
Resumo:
This thesis documents an investigation of the effect of solar radiation pressure on the motion of an artificial satellite. Consideration is given to the methods required for the inclusion of the discontinuous effect of the Earth's shadow. The analysis resulting from the description of a deformed diffusely reflecting balloon satellite and an algorithm describing the effects of Earth reflected solar radiation pressure are developed, culminating in the application of the derived theory to the orbital data of the balloon satellite, Explorer 19.