974 resultados para Sol-gel, dip-coating, erbium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoporous anatase with a thin interconnected filmlike morphology has been synthesized in a single step by coupling a nonhydrolytic condensation reaction of a Ti precursor with a hybrid sol-gel combustion reaction. The method combines the advantages of a conventional sol-gel method for the formation of porous structures with the high crystallinity of the products obtained by combustion methods to yield highly crystalline, phase-pure nanoporous anatase. The generation of pores is initiated by the formation of reverse micelles in a polymeric polycondensation product, which expand during heating, leading to larger pores. A reaction scheme involving a complex formation and nonhydrolytic polycondensation reaction with ester elimination leads to the formation of ail extended Ti-O-Ti network. The effect of process parameters, such as temperature and relative ratio of cosurfactants, on phase formation has been studied. The possibility of band gap engineering by controlled doping during synthesis and the possibility of attachment of molecular/nanoparticle sensitizers provide opportunities for easy preparation of photoanodes for solar cell applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report the synthesis of barium zirconate, BaZrO3, (BZ) nanotubes fabricated by the modified sol-gel method within the nanochannels of anodic aluminum oxide (AAO) templates. The morphology, structure, and composition of as prepared nanotubes were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), selected-area electron diffraction ( SAED), high resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The results of XRD and SAED indicated that postannealed (at 650 degrees C for 1 h) BZ nanotubes (BZNTs) exhibited a polycrystalline cubic perovskite crystal structure. SEM and TEM analysis revealed that BZNTs possessed a uniform length and diameter (similar to 200 nm) and the thickness of the wall of the BZNTs was about 20 nm. Y-junctions, multiple branching and typical T-junctions were also observed in some BZNTs. EDX analysis demonstrated that stoichiometric BaZrO3 was formed. HRTEM image confirmed that the obtained BZNTs were composed of nanoparticles in the range of 5-10 nm. The possible formation mechanism of BZNTs was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research fabrication of crystalline PbZrO3 (PZ) nanoparticles and their phase transformation behavior is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PZ, which was dried at 150 degrees C and then calcined at 300-700 degrees C for 1 h. The morphology, crystallinity and phase formation of as synthesized nanoparticles were studied by the selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermal gravimetric analysis/differential scanning calorimetry (TGA-DSC), and high resolution transmission electron microscope (HRTEM). The XRD, SAED, and TGA-DSC analyses confirmed the tetragonal lead rich zirconia phase (t-Z phase) and monoclinic zirconia phase (m-Z phase) as the intermediate phases during the calcinations process followed by crystallization of single orthorhombic PZ phase at about 700 degrees C. The average PZ particle size was observed about 20 nm as confirmed by TEM study. Energy-dispersive X-ray spectroscopy (EDX) analysis demonstrated that stoichiometric PbZrO3 was formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400-500 degrees C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C-V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (P-s) and coercive field were 0.15 mu C/cm(2) and 20 kV/cm, respectively, confirming the presence of ferroelectricity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline perovskite barium titanate with an average particle size less than similar to 10 nm is produced using sol-gel route involving ligand-assisted templating. BaTiO3 is obtained by the controlled hydrolysis and condensation reaction of barium acetate (Ba(CH3COO)(2)) with titanium tetra chloride (TiCl4) in the reverse micelles of dodecylamine (DDA) which is used as the template. Our attempts to produce mesoporous BaTiO3 have resulted in the formation of nanocrystalline BaTiO3. The synthesis of nanostructured BaTiO3 is carried out using the ligand-assisted templating approach which proceeds through the sol-gel route. Dodecylamine is used as the template. The sol-gel process in general presents inherent advantages because the nanostructure of the desired materials can be controlled together with their porous structure. Ligand-assisted templating approach involves the formation of covalent bond between the inorganic analogue and the template. Ba(CH3COO)(2) and TiCl4 are used as barium-source and titanium-source respectively. The reaction between Ba(CH3COO)(2) and TiCl4 is found to take place deliberately on the pre-assembled species which acts as the template or occurring with in them which in turn will lead to the generation of the desired nanoscale structure (nanopores or nanoparticles).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antiferroelectricity of sol-gel grown pure and La modified PbZrO3 thin films, with a maximum extent of 6 mol%, has been characterized by temperature dependent P-E hysteresis loops within the applied electric field of 60 MV/m. It has been seen that on extent of La modification electric field induced phase transformation can be altered and at 40 degrees C its maximum value has been observed at +/- 38 MV/m on 6 mol% modifications whereas the minimum value is +/- 22 MV/m on 1 mol%. On La modification the variation of electric field induced phase transformations at 40 degrees C has been correlated with the temperature of ntiferroelectric phase condensation on cooling. The critical electric fields for saturated P-E hysteresis loops have been defined from field dependent maximum polarizations and their variations on La modification show a similar trend as found in their dielectric phase transition temperatures. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pb0.76Ca0.24TiO3 (PCT24) nanoparticles were synthesized by modified sal gel method and characterized by a number of experimental techniques such as X-ray diffraction, TGA-DTA, FTIR and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) and selected-area electron diffraction (SAED) investigations demonstrated that the postannealed (650 degrees C for 1 h) PCT24 nanoparticles have tetragonal perovskite crystal structure. TEM have been employed to characterize the morphology, structure and composition of the as prepared nanoparticles. Dielectric results indicates the evidence for relaxor type behavior while observed leaky ferroelectric loops may be because of the defects such as grain boundaries and the pores in the sample as the sample was not heated at higher temperature, to retain the nanosize dimension of the particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous SiO2 thin films were prepared on glass and silicon substrates by cost effective sol-gel method. Tetra ethyl ortho silicate (TEOS) was used as the precursor material, ethanol as solvent and concentrated HCl as a catalyst. The films were characterized at different annealing temperatures. The optical transmittance was slightly increased with increase of annealing temperature. The refractive index was found to be 1.484 at 550 nm. The formation of SiO2 film was analyzed from FT-IR spectra. The MOS capacitors were designed using silicon (1 0 0) substrates. The current-voltage (I-V), capacitance-voltage (C-V) and dissipation-voltage (D-V) measurements were taken for all the annealed films deposited on Si (1 0 0). The variation of current density, resistivity and dielectric constant of SiO2 films with different annealing temperatures was investigated and discussed for its usage in applications like MOS capacitor. The results revealed the decrease of dielectric constant and increase of resistivity of SiO2 films with increasing annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report Raman scattering from the boehmite, gamma-, delta- and alpha-phases of the alumina gel. Samples are characterized by transmission and scanning electron microscopy, X-ray diffraction and density measurements. The main Raman line in the boehmite phase is red-shifted as well as asymmetrically broadened with respect to that in the crystalline boehmite, signifying the nanocrystalline nature of the gel. Raman signatures are absent in the gamma- and delta-phases due to the disorder in cation vacancies. We also show that low frequency Raman scattering from the boehmite phase resembles that from a fractal network, characterized in terms of fraction dimension ($) over tilde d. Taking Hausdorff dimension D of the boehmite gel to be 2.5 (or 3.0), the value of ($) over tilde d is 1.33 +/- 0.02 (or 1.44 +/- 0.02), which is close to the theoretically predicted value of 4/3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite ionic conductors based on magnesium salts and sol-gel derived silicate-tetraethylene glycol hybrids have been synthesized. The structure of these materials has been studied by FT-IR, FT-Raman, Si-29 and C-13 NMR and XRD techniques. The composite systems can be best described as diphasic with silicate as filters in the organic phase that provides solubility of the ionic dispersants. The ionic interactions in the matrix are clearly observed in the FT-Raman spectra. The ionic conductivity is determined to be of the order of 10(-7) to 10(-5) S cm(-1) at room temperature for MgCl2 and Mg(ClO4)(2) salts respectively. The conductivity reaches 10(-4) and 10(-3) S cm(-1) at 80degreesC respectively.