977 resultados para Soil water storage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agro-hydrological models have widely been used for optimizing resources use and minimizing environmental consequences in agriculture. SMCRN is a recently developed sophisticated model which simulates crop response to nitrogen fertilizer for a wide range of crops, and the associated leaching of nitrate from arable soils. In this paper, we describe the improvements of this model by replacing the existing approximate hydrological cascade algorithm with a new simple and explicit algorithm for the basic soil water flow equation, which not only enhanced the model performance in hydrological simulation, but also was essential to extend the model application to the situations where the capillary flow is important. As a result, the updated SMCRN model could be used for more accurate study of water dynamics in the soil-crop system. The success of the model update was demonstrated by the simulated results that the updated model consistently out-performed the original model in drainage simulations and in predicting time course soil water content in different layers in the soil-wheat system. Tests of the updated SMCRN model against data from 4 field crop experiments showed that crop nitrogen offtakes and soil mineral nitrogen in the top 90 cm were in a good agreement with the measured values, indicating that the model could make more reliable predictions of nitrogen fate in the crop-soil system, and thus provides a useful platform to assess the impacts of nitrogen fertilizer on crop yield and nitrogen leaching from different production systems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wildfires can induce or enhance soil water repellency under a range of vegetation communities. According to mainly USA-based laboratory studies, repellency is eliminated at a maximum soil temperature (T) of 280–400°C. Knowledge of T reached during a wildfire is important in evaluating post-fire soil physical properties, fertility and seedbed status. T is, however, notoriously difficult to ascertain retrospectively and often based on indicative observations with a large potential error. Soils under fire-prone Australian eucalypt forests tend to be water repellent when dry or moderately moist even if long unburnt. This study aims to quantify the temperature of water repellency destruction for Australian topsoil material sampled under three sites with contrasting eucalypt cover (Eucalyptus sieberi, E. ovata and E. baxteri). Soil water repellency was present prior to heating in all samples, increased during heating, but was abruptly eliminated at a specific T between 260 and 340°C. Elimination temperature varied somewhat between samples, but was found to be dependent on heating duration, with longest duration resulting in lowest elimination temperature. Results suggest that post-fire water repellency may be used as an aid in hindcasting soil temperature reached during the passage of a fire within repellency-prone environments.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little attention has been paid to the possibility that soil water repellency could enhance non-equilibrium water flow and solute transport through macropores present in structured clay soils. In this study, we measured infiltration and solute transport in a clay soil under near-saturated conditions in both the field using tension infiltrometers and in the laboratory on undisturbed soil columns. Measurements were made on adjacent plots under grass and continuous arable cultivation. Steady-state field infiltration rates measured using water and ethanol as the infiltrating fluids demonstrated that the soil macroporosity under grass was better developed, but that much of the structural pore system was inactive due to water repellency. No water repellency was detected on the arable plot disturbed by tillage. Dye tracing showed that the conducting macroporosity was largely comprised of earthworm channels in the grassed plot and inter-aggregate voids resulting from ploughing in the arable plot. Tracer breakthrough curves measured on field-dry soil indicated rapid macropore transport in columns taken from both plots, although the degree of non-equilibrium transport appeared somewhat stronger under grass. This result, which was attributed to water repellency, was also consistent with the larger flow-weighted mean pore size found in the field infiltration experiments. It is concluded that water repellency in undisturbed structured clay soils can have significant effects on the occurrence of non-equilibrium water and solute transport in macropores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the bean yield under different water table levels as well as the moisture and nitrate distribution in the soil profile, a field experiment was carried out at the experimental area from the College of Agronomic Sciences - UNESP, Botucatu, SP, Brazil. Beans were grown in field lysimeters and subjected to five water table depths:30; 40; 50; 60 and 70 cm. The moisture in the soil profile was gravimetrically determined through samples obtained at 10; 20; 30; 40; 50; 60 and 70cm of depth. The water table depths of 30cm and 40cm showed the highest productivities (3,228.4 kg.ha-1 and 3,422.1 kg.ha-1, respectively), showing no statistical differences between each other. The highest productivity was related to the two most elevated water table levels (30 and 40cm), which provided the highest moisture average values on basis of volume in the soil profile (33.3 e 31%) as well as the consumptive use of water (416 and 396 mm). The nitrate content during the bean cycle at the extraction depth of 60cm has been under the safe drinking limit of 10 mg.1-1 for water table depths of 30; 40; 50 and 60cm, showing the denitrification effectiveness as a way of controlling water table from nitrate pollution. The water table handling allowed the attainment of high bean productivity levels, as well as the reduction of the nitrate level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the bean yield under different water table levels as well as the moisture and nitrate distribution in the soil profile, a field experiment was carried out in the experimental area of the College of Agricultural Sciences - UNESP, Botucatu, SP, Brazil. Beans were grown in field lysimeters under five water table depths: 30; 40; 50; 60 and 70 cm. The moisture in the soil profile was determined gravimetrically using samples collected at 10; 20; 30; 40; 50; 60 and 70 cm deep. The water table depths of 30cm and 40cm showed the highest productivities (3,228.4kg.ha-1 and 3,422.1kg.ha-1, respectively), with no statistical differences between them. The highest productivity was related to the two highest water table levels (30 and 40cm), which provided the highest moisture average values on the basis of volume in the soil profile (33.3 e 31%) as well as the consumptive use of water (416 and 396mm). The nitrate content during the bean cycle at the extraction depth of 60cm was below the safe drinking limit of 10mg.1-1 for water table depths of 30; 40; 50 and 60cm, which shows the denitrification efficiency as a way of controlling nitrate pollution in water tables. The management of water table can lead to high levels of bean yield and to a better control of nitrate pollution in underground water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture provides food, fibre and energy, which have been the foundation for the development of all societies. Soil carbon plays an important role in providing essential ecosystem services. Historically, these have been viewed in terms of plant nutrient availability only, with agricultural management being driven to obtain maximum benefits of this soil function. However, recently, agricultural systems have been envisioned to provide a more complete set of ecosystem services, in a win-win situation, in addition to the products normally associated with agriculture. The expansion and growth of agricultural production in Brazil and Argentina brought about a significant loss of soil carbon stocks, and consequently the associated ecosystem services, such as flooding and erosion control, water filtration and storage. There are several examples of soil carbon management for multiple benefits in Brazil and Argentina, with new soil management techniques attempting to reverse this trend by increasing soil carbon (C) stocks. One example is zero tillage, which has the advantage of reducing CO2 emissions from the soil and thus preserving or augmenting C stocks. Crop rotations that include cover crops have been shown to sequester significant amounts of C, both in Brazilian subtropical regions as well as in the Argentinean Pampas. Associated benefits of zero tillage and cover crop rotations include flood and erosion control and improved water filtration and storage. Another positive example is the adoption of no-burning harvest in the vast sugarcane area in Brazil, which also contributes to reduced CO2 emissions, leaving crop residues on the soil surface and thus helping the conservation of essential plant nutrients and improving water storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The guidelines discuss the following topics: - Towards a common understanding of Soil & Water Conservation - Disturbances in the water and biomass cycle lead to a decrease in soil fertility - Diagnosis of the local water and biomass cycle and their links - Assessment of S&W Conservation measures - Implementation of S&W Conservation measures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains three time series of measurements of soil carbon (particular and dissolved) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Particulate soil carbon: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. Total carbon concentration was analyzed on ball-milled subsamples by an elemental analyzer at 1150°C. Inorganic carbon concentration was measured by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon. 2. Particulate soil carbon (high intensity sampling): In one block of the Jena Experiment soil samples were taken to a depth of 1 m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling. 3. Dissolved organic carbon: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer. Annual mean values of DOC are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.