992 resultados para Soil erosion indicators


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desertification is a critical issue for Mediterranean drylands. Climate change is expected to aggravate its extension and severity by reinforcing the biophysical driving forces behind desertification processes: hydrology, vegetation cover and soil erosion. The main objective of this thesis is to assess the vulnerability of Mediterranean watersheds to climate change, by estimating impacts on desertification drivers and the watersheds’ resilience to them. To achieve this objective, a modeling framework capable of analyzing the processes linking climate and the main drivers is developed. The framework couples different models adapted to different spatial and temporal scales. A new model for the event scale is developed, the MEFIDIS model, with a focus on the particular processes governing Mediterranean watersheds. Model results are compared with desertification thresholds to estimate resilience. This methodology is applied to two contrasting study areas: the Guadiana and the Tejo, which currently present a semi-arid and humid climate. The main conclusions taken from this work can be summarized as follows: • hydrological processes show a high sensitivity to climate change, leading to a significant decrease in runoff and an increase in temporal variability; • vegetation processes appear to be less sensitive, with negative impacts for agricultural species and forests, and positive impacts for Mediterranean species; • changes to soil erosion processes appear to depend on the balance between changes to surface runoff and vegetation cover, itself governed by relationship between changes to temperature and rainfall; • as the magnitude of changes to climate increases, desertification thresholds are surpassed in a sequential way, starting with the watersheds’ ability to sustain current water demands and followed by the vegetation support capacity; • the most important thresholds appear to be a temperature increase of +3.5 to +4.5 ºC and a rainfall decrease of -10 to -20 %; • rainfall changes beyond this threshold could lead to severe water stress occurring even if current water uses are moderated, with droughts occurring in 1 out of 4 years; • temperature changes beyond this threshold could lead to a decrease in agricultural yield accompanied by an increase in soil erosion for croplands; • combined changes of temperature and rainfall beyond the thresholds could shift both systems towards a more arid state, leading to severe water stresses and significant changes to the support capacity for current agriculture and natural vegetation in both study areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Arqueologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Historically, shifts to reduced and no-tillage management for production of crops were fostered by needs to decrease soil erosion and loss of organic matter, reduce fuel and labour costs and conserve soil water, as compared with conventional fallow tillage management. Recent interest in maintaining soil quality has been stimulated by a renewed awareness of the importance of soil condition to both the sustainability of agricultural production systems and environmental quality (Doran and Parkin, 1996). The aim of this project was to determine the impact on the physical, chemical and microbiological status of the soil of conventional and reduced tillage. It has been suggested that the reduced soil disturbance associated with the tine cultivator improves soil structure, increases nutrient content in the top 10cm of soil, increases microbial activity and improves physical characteristics. From this study it was determined that the environmental benefits linked to reduced tillage in literature, did not develop in the first two years of this programmes implementation. The results of this study determined that soil nutrients did not increase in concentration in the top 10 cm of soil under reduced cultivation. The only exception was exchangeable potassium. As potassium is not a mobile nutrient its movement is dependent on soil disturbance, therefore under reduced cultivation its concentration was allowed to accumulate in the upper horizon of the soil profile. Microbial activity was greater in the conventionally tilled treatments, as determined by total aerobic bacterial numbers. This could be due to the increased rates of soil aeration in this treatment. Numbers of aerobic bacteria were greater in the conventional tillage treatments at both incubation temperatures of 22 and 32° C. The physical characteristics of the soil determined, indicate that below the depth of soil cultivation, cone penetration resistance increases. Therefore the reduced cultivation treatments would be more prone to soil compaction, higher in the soil profile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Actualment la situació del mercat espanyol i català del biodièsel es caracteritza per les grans importacions d’oli de palma africana. Per a produir aquesta matèria primera s’estan establint plantacions a gran escala d’Elaeis guineensis (palma africana) a Indonèsia. El monocultiu d’Elaeis guineensis i la producció de l’oli tenen associats grans impactes ambientals i socials. Per una banda, els impactes ambientals són principalment la desforestació, el canvi d’ús del sòl, la pèrdua de biodiversitat, l’erosió del sòl i la contaminació de l’aire, del sòl de l’aigua. Per altra banda, els impactes socials més destacats són la violació dels drets humans dels pobles indígenes, els conflictes d’adquisició de terres i que es compromet la seguretat alimentària del país. Per tant, l’ús del biodièsel produït amb oli de palma africana redueix les emissions de GEH a Espanya i a Catalunya provocant un gran impacte ambiental i social a Indonèsia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crooping practices produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hub/Spokes Nutrient Management Model produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Designation of Co-benefits and Its Implication for Policy: Water Quality versus Carbon Sequestration in Agricultural Soils, The

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current monitoring techniques for determination of compaction of earthwork and asphalt generally involve destructive testing of the materials following placement. Advances in sensor technologies show significant promise for obtaining necessary information through nondestructive and remote techniques. To develop a better understanding of suitable and potential technologies, this study was undertaken to conduct a synthesis review of nondestructive testing technologies and perform preliminary evaluations of selected technologies to better understand their application to testing of geomaterials (soil fill, aggregate base, asphalt, etc.). This research resulted in a synthesis of potential technologies for compaction monitoring with a strong emphasis on moisture sensing. Techniques were reviewed and selectively evaluated for their potential to improve field quality control operations. Activities included an extensive review of commercially available moisture sensors, literature review, and evaluation of selected technologies. The technologies investigated in this study were dielectric, nuclear, near infrared spectroscopy, seismic, electromagnetic induction, and thermal. The primary disadvantage of all the methods is the small sample volume measured. In addition, all the methods possessed some sensitivity to non-moisture factors that affected the accuracy of the results. As the measurement volume increases, local variances are averaged out providing better accuracy. Most dielectric methods with the exception of ground penetrating radar have a very small measurement volume and are highly sensitive to variations in density, porosity, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stability berms are commonly constructed where roadway embankments cross soft or unstable ground conditions. Under certain circumstances, the construction of stability berms cause unfavorable environmental impacts, either directly or indirectly, through their effect on wetlands, endangered species habitat, stream channelization, longer culvert lengths, larger right-of-way purchases, and construction access limits. Due to an ever more restrictive regulatory environment, these impacts are problematic. The result is the loss of valuable natural resources to the public, lengthy permitting review processes for the department of transportation and permitting agencies, and the additional expenditures of time and money for all parties. The purpose of this project was to review existing stability berm alternatives for potential use in environmentally sensitive areas. The project also evaluates how stabilization technologies are made feasible, desirable, and cost-effective for transportation projects and determines which alternatives afford practical solutions for avoiding and minimizing impacts to environmentally sensitive areas. An online survey of engineers at state departments of transportation was also conducted to assess the frequency and cost effectiveness of the various stabilization technologies. Geotechnical engineers that responded to the survey overwhelmingly use geosynthetic reinforcement as a suitable and cost-effective solution for stabilizing embankments and cut slopes. Alternatively, chemical stabilization and installation of lime/cement columns is rarely a remediation measure employed by state departments of transportation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pollution from sediment and nutrients has hurt Farmers Creek’s fish population and placed the stream on the state’s impaired waters list. If we want to give our children and grandchildren clean water for drinking, swimming and fishing – we need to act now.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iowa Department of Natural Resources fact sheet on exploring the mid-continent rift.