860 resultados para Sodium hydroxide


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2-Phenoxyethanol (ethylene glycol monophenyl ether) is used as solvent for cellulose acetate, dyes, inks, and resins; it is a synthetic intermediate in the production of plasticizers, pharmaceuticals, and fragrances. Phenoxyethanol is obtained industrially by reaction of phenol with ethylene oxide, in the presence of an homogeneous alkaline catalyst, typically sodium hydroxide. The yield is not higher than 95-96%, because of the formation of polyethoxylated compounds. However, the product obtained may not be acceptable for use in cosmetic preparations and fragrance formulations, due to presence of a pungent “metallic” odor which masks the pleasant odor of the ether, deriving from residual traces of the metallic catalyst. Here we report a study aimed at using ethylene carbonate in place of ethylene oxide as the reactant for phenoxyethanol synthesis; the use of carbonates as green nucleophilic reactants is an important issue in the context of a modern and sustainable chemical industry. Moreover, in the aim of developing a process which might adhere the principles of Green Chemistry, we avoided the use of solvents, and used heterogeneous basic catalysts. We carried out the reaction by using various molar ratios between phenol and ethylene carbonate, at temperatures ranging between 180 and 240°C, with a Na-mordenite catalyst. Under specific conditions, it was possible to obtain total phenol conversion with >99% yield to phenoxyethanol in few hours reaction time, using a moderate excess of ethylene carbonate. Similar results, but with longer reaction times, were obtained using a stoichiometric feed ratio of reactants. One important issue of the research was finding conditions under which the leaching of Na was avoided, and the catalyst could be separated and reused for several reaction batches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two types of volcanic ashes referenced as ZD (volcanic ashes from Djoungo) and ZG (volcanic ashes from Galim) were collected from two Cameroonian localities. They were characterized (chemical and mineralogical compositions, amorphous phase content, particle size distribution and specific surface area) and used as raw materials for the synthesis of geopolymer cements at ambient temperature of laboratory (24 ± 3 °C). The synthesized products were characterized by determining their setting time, linear shrinkage and compressive strength, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. The mineralogical composition, the amorphous phase content, the particle size distribution, the specific surface area of the volcanic ashes as well as the mass ratio of the alkaline solution (sodium silicate / sodium hydroxide) were the main parameters which influenced the synthesis of geopolymers with interesting characteristics at ambient temperature (24 ± 3 °C). The volcanic ashes (ZD) whose mineralogical composition contained anhydrite, low amorphous phase content and low specific surface area led to long setting times. Moreover, its products swelled and presented cracks due to the formation of ettringite and these resulted in low compressive strengths (7 to 19 MPa). The volcanic ashes (ZG) containing high amounts of amorphous phase and high specific surface area led geopolymers with setting times between 490 and 180 minutes and compressive strength between 7 and 50 MPa at ambient temperature of laboratory. The properties of geopolymers were improved when elaborated with a mixture of volcanic ashes and metakaolin (ZD–MK and ZG–MK). For geopolymers obtained from ZD–MK, the setting time was between 500 and 160 minutes while it was between 220 and 125 minutes for geopolymers obtained from ZG–MK. The compressive strength greatly increased between 23 and 68 MPa and 39 and 64 MPa for geopolymers obtained from ZG –MK and ZD–MK respectively. A comparative study of the properties of mixtures of metakaolin–alumina and volcanic ash–alumina based geopolymers shows that metakaolin is a good source of Al2O3 and SiO2 and which highly reactive with alkaline solution and produces geopolymers with better characteristics compared to volcanic ash based–geopolymer. The properties of volcanic ash–based geopolymer were also improved when amorphous alumina was incorporated into the volcanic ash. This additive is used to compensate the deficiencies in Al2O3 content in the volcanic ash. Compare to when volcanic ash is used alone 20 to 40 % incorporation of this additive corresponded to increases of the compressive strength by 18.1 % for metakaolin-alumina based-geopolymers and by 32.4 % for volcanic ash-based geopolymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the erosion of dental enamel. The aim of the present study was to measure the initial pH of several types of yogurt and to test the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine the buffering capacity and related erosive potential of yogurt. METHOD AND MATERIALS: Twenty-five milliliters of 7 types of freshly opened yogurt was titrated with 1 mol/L of sodium hydroxide, added in 0.5 mL increments, until the pH reached 10, to assess the total titratable acidity, a measure of the drink's own buffering capacity. The degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite were also calculated, using a computer program developed for this purpose. For statistical analysis, samples were compared using Kruskal-Wallis test. RESULTS: The buffering capacities can be ordered as follows: fruit yogurt >low-fat yogurt >bioyogurt >butter yogurt >natural yogurt >light fruit yogurt >light yogurt. The results suggest that, in vitro, fruit yogurt has the greatest buffering capacity. CONCLUSION: It can be stated that it is not possible to induce erosion on enamel with any type of yogurt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carboxylate-based deicing and anti-icing chemicals became widely used in the mid 1990s, replacing more environmentally burdensome chemicals. Within a few years of their adoption, distress of portland cement concrete runways was reported by a few airports using the new chemicals. Distress manifested characteristics identical to that of alkali silica reactivity (ASR), but onset occurred early in the pavement’s operating life and with pavements thought to contain innocuous aggregate. The carboxylate-based deicing chemicals were suspected of exacerbating ASR-like expansion. Innocuous, moderately, and highly reactive aggregates were tested using modified ASTM C1260 and ASTM C1567 procedures with soak solutions containing deicer solutions and sodium hydroxide or potassium hydroxide. ASR-like expansion is exacerbated in the presence of potassium acetate. The expansion rate produced by a given aggregate is also a function of the alkali hydroxide used. Petrographic analyses were performed on thin sections prepared from mortar bars used in the experiments. Expansion occurred via two mechanisms; rupture of aggregate grains and expansion of paste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is the purpose of this investigation to obtain some insight into optimum conditions for leaching Stib­nite with sodium hydroxide solution and also to steady the factors affecting the electrolysis of the resulting solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary objective of this study was to determine if there is a change in permeation rates when limited use protective fabrics undergo repeated exposure and wash cycles. The null hypothesis of this study was that no substantial change in permeation takes place after the test material is subjected to repeated contact with a strong acid or base and has undergone repeated wash cycles. ^ The materials tested were DuPont Tychem® CPF 3 and CPF 4 fabrics. The challenge chemicals in this study were ninety-eight percent sulfuric acid and fifty percent sodium hydroxide. Permeation testing was conducted utilizing ASTM designation F739-99a Standard Test Method for Resistance of Protective Clothing Materials to Permeation by Liquids or Gases Under Conditions of Continuous Contact. ^ In this study, no change in permeation rates of either challenge chemical was detected for CPF 3 or CPF 4 limited use protective fabrics after repeated exposure and wash cycles. Certain unexposed areas of the fabric suffered structural degradation unrelated to exposure and which may be due to multiple washings.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This data set contains measurements of phosphorus fractions (Hedley fractions) in soil collected 2007 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied. Sequentially, 20 ml NaHCO3 (adjusted to pH 8.5), 30 ml NaOH, and 35 ml HCl were used as extraction solutions for 0.5 g soil. The last step comprised the combustion (550 °C) of the remaining soil to destroy all organic material followed by shaking with 20 ml H2SO4. Organic P concentrations of the respective fractions were calculated as the difference between total dissolved P and inorganic P. Duplicate phosphate concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfate reduction (SR) and anaerobic oxidation of methane (AOM) were measured ex situ by the whole core injection method (doi:10.1080/01490457809377722). We incubated the samples at in situ temperature (1.0°C) for 12 hours with either 14** CH4 (dissolved in water, 2.5 kBq) or carrier-free 35** SO4 (dissolved in water, 50 kBq). Sediment was fixed in 25 ml 2.5% sodium hydroxide (NaOH) solution or 20 ml 20% ZnAc solution for AOM or SR, respectively. Turnover rates were measured as previously described (http://edoc.mpg.de/177065; doi:10.4319/lom.2004.2.171).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfate reduction (SR) and anaerobic oxidation of methane (AOM) were measured ex situ by the whole core injection method (doi:10.1080/01490457809377722). We incubated the samples at in situ temperature (1.0°C) for 12 hours with either 14** CH4 (dissolved in water, 2.5 kBq) or carrier-free 35** SO4 (dissolved in water, 50 kBq). Sediment was fixed in 25 ml 2.5% sodium hydroxide (NaOH) solution or 20 ml 20% ZnAc solution for AOM or SR, respectively. Turnover rates were measured as previously described (http://edoc.mpg.de/177065; doi:10.4319/lom.2004.2.171).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfate reduction (SR) and anaerobic oxidation of methane (AOM) were measured ex situ by the whole core injection method (doi:10.1080/01490457809377722). We incubated the samples at in situ temperature (1.0°C) for 12 hours with either 14** CH4 (dissolved in water, 2.5 kBq) or carrier-free 35** SO4 (dissolved in water, 50 kBq). Sediment was fixed in 25 ml 2.5% sodium hydroxide (NaOH) solution or 20 ml 20% ZnAc solution for AOM or SR, respectively. Turnover rates were measured as previously described (http://edoc.mpg.de/177065; doi:10.4319/lom.2004.2.171).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O amido é um ingrediente com grande versatilidade de aplicação, e as sementes de jaca, fruto bem difundido, porém pouco aproveitado no Brasil, contêm uma quantidade considerável de amido, sendo ainda fonte de ferro e proteínas. Dessa maneira, os objetivos desse projeto foram a obtenção da farinha de sementes de jaca das variedades mole e dura, a extração do amido utilizando diferentes solventes, e a caracterização de suas propriedades físico-químicas, estruturais e funcionais, bem como a caracterização reológica de dispersões/géis de amido em cisalhamento estacionário e oscilatório. A extração alcalina do amido, além de reduzir significativamente o conteúdo de lipídeos e proteínas, deixando o amido mais puro, promoveu um aumento no teor de amilose e influenciou diretamente as características de inchamento e solubilidade, que apresentaram aumento significativo a partir da temperatura de 70 °C. O aumento da temperatura ocasionou aumento no poder de inchamento e solubilidade, que foi mais pronunciado para a variedade dura, porém esses valores ainda foram considerados baixos (< 17%). Os amidos de sementes de jaca apresentaram grânulos lisos, arredondados e em forma de sino, com formato mais truncado para o amido extraído com hidróxido de sódio. O diâmetro médio dos grânulos de amido foi menor para a extração alcalina, mas sempre com comportamento monomodal. Foi observado um padrão de difração de Raios-X do tipo A para todas as amostras estudadas, e o índice de cristalinidade foi maior para os amidos de sementes de jaca dura, com uma redução estimada em 70% para os amidos obtidos por extração alcalina. A temperatura de gelatinização dos amidos de semente de jaca foi considerada alta (70-100 °C). Os amidos de sementes de jaca dura obtidos na extração com água apresentaram maiores valores de viscosidade de pico e de Breakdown, que representa menor resistência mecânica. A extração com solução de NaOH 0,1 M aumentou a tendência a retrogradação de ~36% (extração aquosa) para 64% e 45% dos amidos de sementes de jaca das variedades mole e dura, respectivamente. Todas as amostras apresentaram comportamento pseudoplástico (n < 1) nas concentrações e temperaturas estudadas, e as dispersões e/ou géis de amido obtidos pela extração alcalina com NaOH apresentaram menor tixotropia e maiores valores de viscosidade. Os modelos Lei da Potência e Herschel Bulkley apresentaram ótimos ajustes aos pontos experimentais (R² ~0,998) para as amostras com 2 e 6 % de amido, respectivamente, porém para a concentração de 5%, o melhor modelo foi função da variedade do fruto usado na obtenção do amido. A dependência das propriedades reológicas com a temperatura foi analisada pela equação de Arrhenius e a energia de ativação foi baixa (15-25 kJ/mol). Quanto ao comportamento viscoelástico, as amostras com 5 e 6% de amido apresentaram comportamento de gel fraco e o aumento da concentração desse polissacarídeo produziu um aumento na elasticidade do material. Os módulos de armazenamento (G\') associados à elasticidade do gel de amido aumentaram durante o seu resfriamento nos ensaios de varredura de temperatura, o que pode ser relacionado à recristalização da amilose durante esse processo e mantiveram-se praticamente constantes no aquecimento isotérmico a 80 °C, sugerindo boa estabilidade térmica do gel. A farinha isolada da semente de jaca pode ser considerada fonte de fibras e apresentou elevados teores de proteínas (~14-16%) e ferro (~85-150 mg/kg). A distribuição do tamanho de partículas da farinha apresentou comportamento bimodal, com grânulos arredondados, presença de fibras e uma matriz proteica envolvendo os grânulos de amido. As propriedades de pasta revelaram maior pico de viscosidade para a farinha de semente de jaca mole. As características encontradas sugerem que os amidos de semente de jaca poderiam ser aplicados na produção de filmes biodegradáveis, e a farinha da semente de jaca poderia ser utilizada em substituição parcial à farinha convencional na fabricação de bolos e biscoitos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.