977 resultados para Smart grids Distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first part of the thesis has been devoted to the transmission planning with high penetration of renewable energy sources. Both stationary and transportable battery energy storage (BES, BEST) systems have been considered in the planning model, so to obtain the optimal set of BES, BEST and transmission lines that minimizes the total cost in a power network. First, a coordinated expansion planning model with fixed transportation cost for BEST devices has been presented; then, the model has been extended to a planning formulation with a distance-dependent transportation cost for the BEST units, and its tractability has been proved through a case study based on a 190-bus test system. The second part of this thesis is then devoted to the analysis of planning and management of renewable energy communities (RECs). Initially, the planning of photovoltaic and BES systems in a REC with an incentive-based remuneration scheme according to the Italian regulatory framework has been analysed, and two planning models, according to a single-stage, or a multi-stage approach, have been proposed in order to provide the optimal set of BES and PV systems allowing to achieve the minimum energy procurement cost in a given REC. Further, the second part of this thesis is devoted to the study of the day-ahead scheduling of resources in renewable energy communities, by considering two types of REC. The first one, which we will refer to as “cooperative community”, allows direct energy transactions between members of the REC; the second type of REC considered, which we shall refer to as “incentive-based”, does not allow direct transactions between members but includes economic revenues for the community shared energy, according to the Italian regulation framework. Moreover, dispatchable renewable energy generation has been considered by including producers equipped with biogas power plants in the community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unauthorized accesses to digital contents are serious threats to international security and informatics. We propose an offline oblivious data distribution framework that preserves the sender's security and the receiver's privacy using tamper-proof smart cards. This framework provides persistent content protections from digital piracy and promises private content consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A crescente necessidade de reduzir a dependência energética e a emissão de gases de efeito de estufa levou à adoção de uma série de políticas a nível europeu com vista a aumentar a eficiência energética e nível de controlo de equipamentos, reduzir o consumo e aumentar a percentagem de energia produzida a partir de fontes renováveis. Estas medidas levaram ao desenvolvimento de duas situações críticas para o setor elétrico: a substituição das cargas lineares tradicionais, pouco eficientes, por cargas não-lineares mais eficientes e o aparecimento da produção distribuída de energia a partir de fontes renováveis. Embora apresentem vantagens bem documentadas, ambas as situações podem afetar negativamente a qualidade de energia elétrica na rede de distribuição, principalmente na rede de baixa tensão onde é feita a ligação com a maior parte dos clientes e onde se encontram as cargas não-lineares e a ligação às fontes de energia descentralizadas. Isto significa que a monitorização da qualidade de energia tem, atualmente, uma importância acrescida devido aos custos relacionados com perdas inerentes à falta de qualidade de energia elétrica na rede e à necessidade de verificar que determinados parâmetros relacionados com a qualidade de energia elétrica se encontram dentro dos limites previstos nas normas e nos contratos com clientes de forma a evitar disputas ou reclamações. Neste sentido, a rede de distribuição tem vindo a sofrer alterações a nível das subestações e dos postos de transformação que visam aumentar a visibilidade da qualidade de energia na rede em tempo real. No entanto, estas medidas só permitem monitorizar a qualidade de energia até aos postos de transformação de média para baixa tensão, não revelando o estado real da qualidade de energia nos pontos de entrega ao cliente. A monitorização nestes pontos é feita periodicamente e não em tempo real, ficando aquém do necessário para assegurar a deteção correta de problemas de qualidade de energia no lado do consumidor. De facto, a metodologia de monitorização utilizada atualmente envolve o envio de técnicos ao local onde surgiu uma reclamação ou a um ponto de medição previsto para instalar um analisador de energia que permanece na instalação durante um determinado período de tempo. Este tipo de monitorização à posteriori impossibilita desde logo a deteção do problema de qualidade de energia que levou à reclamação, caso não se trate de um problema contínuo. Na melhor situação, o aparelho poderá detetar uma réplica do evento, mas a larga percentagem anomalias ficam fora deste processo por serem extemporâneas. De facto, para detetar o evento que deu origem ao problema é necessário monitorizar permanentemente a qualidade de energia. No entanto este método de monitorização implica a instalação permanente de equipamentos e não é viável do ponto de vista das empresas de distribuição de energia já que os equipamentos têm custos demasiado elevados e implicam a necessidade de espaços maiores nos pontos de entrega para conter os equipamentos e o contador elétrico. Uma alternativa possível que pode tornar viável a monitorização permanente da qualidade de energia consiste na introdução de uma funcionalidade de monitorização nos contadores de energia de determinados pontos da rede de distribuição. Os contadores são obrigatórios em todas as instalações ligadas à rede, para efeitos de faturação. Tradicionalmente estes contadores são eletromecânicos e recentemente começaram a ser substituídos por contadores inteligentes (smart meters), de natureza eletrónica, que para além de fazer a contagem de energia permitem a recolha de informação sobre outros parâmetros e aplicação de uma serie de funcionalidades pelo operador de rede de distribuição devido às suas capacidades de comunicação. A reutilização deste equipamento com finalidade de analisar a qualidade da energia junto dos pontos de entrega surge assim como uma forma privilegiada dado que se trata essencialmente de explorar algumas das suas características adicionais. Este trabalho tem como objetivo analisar a possibilidade descrita de monitorizar a qualidade de energia elétrica de forma permanente no ponto de entrega ao cliente através da utilização do contador elétrico do mesmo e elaborar um conjunto de requisitos para o contador tendo em conta a normalização aplicável, as características dos equipamentos utilizados atualmente pelo operador de rede e as necessidades do sistema elétrico relativamente à monitorização de qualidade de energia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no doubt about the necessity of protecting digital communication: Citizens are entrusting their most confidential and sensitive data to digital processing and communication, and so do governments, corporations, and armed forces. Digital communication networks are also an integral component of many critical infrastructures we are seriously depending on in our daily lives. Transportation services, financial services, energy grids, food production and distribution networks are only a few examples of such infrastructures. Protecting digital communication means protecting confidentiality and integrity by encrypting and authenticating its contents. But most digital communication is not secure today. Nevertheless, some of the most ardent problems could be solved with a more stringent use of current cryptographic technologies. Quite surprisingly, a new cryptographic primitive emerges from the ap-plication of quantum mechanics to information and communication theory: Quantum Key Distribution. QKD is difficult to understand, it is complex, technically challenging, and costly-yet it enables two parties to share a secret key for use in any subsequent cryptographic task, with an unprecedented long-term security. It is disputed, whether technically and economically fea-sible applications can be found. Our vision is, that despite technical difficulty and inherent limitations, Quantum Key Distribution has a great potential and fits well with other cryptographic primitives, enabling the development of highly secure new applications and services. In this thesis we take a structured approach to analyze the practical applicability of QKD and display several use cases of different complexity, for which it can be a technology of choice, either because of its unique forward security features, or because of its practicability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we summarize results of our part of the ÄLYKOP-project on customer value creation in the intersection of the health care, ICT, forest and energy industries. The research directs to describe how industry transformation and convergence create new possibilities, business opportunities and even new industries.The report consists of findings which are presented former in academic publications. The publication discusses on customer value, service provision and resource basis of the novel concepts through multiple theorethical frameworks. The report is divided into three maim sections which are theoretical background, discussion on health care industry and evaluations regarding novel smart home concepts. Transaction cost economics and Resource- Based view on the firm provides the theoretical basis to analyze the prescribed phenomena. The health care industry analysis describes the most important changes in the demand conditions of health care services, and explores the features that are likely to open new business opportunities for a solution provider. The third part of the report on the smart home business provides illustrations few potential concepts that can be considered to provide solutions to economical problems which arise from aging of population. The results provide several recommendations for the smart home platform developers in public and private sectors. By the analysis, public organizations dominate service provision and private markets are emergent state at present. We argue that public-private partnerships are nececssary for creating key suppliers. Indeed, paying attion on appropriate regulation, service specifications and technology standards would foster diffusion of new services. The dynamics of the service provision networks is driven by need for new capabiltities which are required for adapting business concepts to new competitive situation. Finally, the smart home framework revealed links between conventionally distant business areas such as health care and energy distribution. The platform integrates functionalities different for purposes which however apply same resource basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing electricity distribution system is under pressure because implementation of distributed generation changes the grid configuration and also because some customers demand for better distribution reliability. In a short term, traditional network planning does not offer techno-economical solutions for the challenges and therefore the idea of microgrids is introduced. Islanding capability of microgrids is expected to enable better reliability by reducing effects of faults. The aim of the thesis is to discuss challenges in integration of microgrids into distribution networks. Study discusses development of microgrid related smart grid features and gives estimation of the guideline of microgrid implementation. Thesis also scans microgrid pilots around the world and introduces the most relevant projects. Analysis reveals that the main focus of researched studies is on low voltage microgrids. This thesis extends the idea to medium voltage distribution system and introduces challenges related to medium voltage microgrid implementation. Differences of centralized and distributed microgrid models are analyzed and the centralized model is discovered to be easiest to implement into existing distribution system. Preplan of medium voltage microgrid pilot is also carried out in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent Storms in Nordic countries were a reason of long power outages in huge territories. After these disasters distribution networks' operators faced with a problem how to provide adequate quality of supply in such situation. The decision of utilization cable lines rather than overhead lines were made, which brings new features to distribution networks. The main idea of this work is a complex analysis of medium voltage distribution networks with long cable lines. High value of cable’s specific capacitance and length of lines determine such problems as: high values of earth fault currents, excessive amount of reactive power flow from distribution to transmission network, possibility of a high voltage level at the receiving end of cable feeders. However the core tasks was to estimate functional ability of the earth fault protection and the possibility to utilize simplified formulas for operating setting calculations in this network. In order to provide justify solution or evaluation of mentioned above problems corresponding calculations were made and in order to analyze behavior of relay protection principles PSCAD model of the examined network have been created. Evaluation of the voltage rise in the end of a cable line have educed absence of a dangerous increase in a voltage level, while excessive value of reactive power can be a reason of final penalty according to the Finish regulations. It was proved and calculated that for this networks compensation of earth fault currents should be implemented. In PSCAD models of the electrical grid with isolated neutral, central compensation and hybrid compensation were created. For the network with hybrid compensation methodology which allows to select number and rated power of distributed arc suppression coils have been offered. Based on the obtained results from experiments it was determined that in order to guarantee selective and reliable operation of the relay protection should be utilized hybrid compensation with connection of high-ohmic resistor. Directional and admittance based relay protection were tested under these conditions and advantageous of the novel protection were revealed. However, for electrical grids with extensive cabling necessity of a complex approach to the relay protection were explained and illustrated. Thus, in order to organize reliable earth fault protection is recommended to utilize both intermittent and conventional relay protection with operational settings calculated by the use of simplified formulas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly growing share of distributed generation in the whole electrical power system’s generating system is currently a worldwide tendency, driven by several factors, encircling mainly difficulties in refinement of megalopolises’ distribution networks and its maintenance; widening environmental concerns adding to both energy efficiency approaches and installation of renewable sources based generation, inherently distributed; increased power quality and reliability needs; progress in IT field, making implementable harmonization of needs and interests of different-energy-type generators and consumers. At this stage, the volume, formed by system-interconnected distributed generation facilities, have reached the level of causing broad impact toward system operation under emergency and post-emergency conditions in several EU countries, thus previously implementable approach of their preliminary tripping in case of a fault, preventing generating equipment damage and disoperation of relay protection and automation, is not applicable any more. Adding to the preceding, withstand capability and transient electromechanical stability of generating technologies, interconnecting in proximity of load nodes, enhanced significantly since the moment Low Voltage Ride-Through regulations, followed by techniques, were introduced in Grid Codes. Both aspects leads to relay protection and auto-reclosing operation in presence of distributed generation generally connected after grid planning and construction phases. This paper proposes solutions to the emerging need to ensure correct operation of the equipment in question with least possible grid refinements, distinctively for every type of distributed generation technology achieved its technical maturity to date and network’s protection. New generating technologies are equivalented from the perspective of representation in calculation of initial steady-state short-circuit current used to dimension current-sensing relay protection, and widely adopted short-circuit calculation practices, as IEC 60909 and VDE 0102. The phenomenon of unintentional islanding, influencing auto-reclosing, is addressed, and protection schemes used to eliminate an sustained island are listed and characterized by reliability and implementation related factors, whereas also forming a crucial aspect of realization of the proposed protection operation relieving measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research towards efficient, reliable and environmental-friendly power supply solutions is producing growing interest to the “Smart Grid” approach for the development of the electricity networks and managing the increasing energy consumption. One of the novel approaches is an LVDC microgrid. The purpose of the research is to analyze the possibilities for the implementation of LVDC microgrids in public distribution networks in Russia. The research contains the analysis of the modern Russian electric power industry, electricity market, electricity distribution business, regulatory framework and standardization, related to the implementation of LVDC microgrid concept. For the purpose of the economic feasibility estimation, a theoretical case study for comparing low voltage AC and medium voltage AC with LVDC microgrid solutions for a small settlement in Russia is presented. The results of the market and regulatory framework analysis along with the economic comparison of AC and DC solutions show that implementation of the LVDC microgrid concept in Russia is possible and can be economically feasible. From the electric power industry and regulatory framework point of view, there are no serious obstacles for the LVDC microgrids in Russian distribution networks. However, the most suitable use cases at the moment are expected to be found in the electrification of remote settlements, which are isolated from the Unified Energy System of Russia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrating renewable energy into built environments requires additional attention to the balancing of supply and demand due to their intermittent nature. Demand Side Response (DSR) has the potential to make money for organisations as well as support the System Operator as the generation mix changes. There is an opportunity to increase the use of existing technologies in order to manage demand. Company-owned standby generators are a rarely used resource; their maintenance schedule often accounts for a majority of their running hours. DSR encompasses a range of technologies and organisations; Sustainability First (2012) suggest that the System Operator (SO), energy supply companies, Distribution Network Operators (DNOs), Aggregators and Customers all stand to benefit from DSR. It is therefore important to consider impact of DSR measures to each of these stakeholders. This paper assesses the financial implications of organisations using existing standby generation equipment for DSR in order to avoid peak electricity charges. It concludes that under the current GB electricity pricing structure, there are several regions where running diesel generators at peak times is financially beneficial to organisations. Issues such as fuel costs, Carbon Reduction Commitment (CRC) charges, maintenance costs and electricity prices are discussed.