577 resultados para Slit-Nozzle
Resumo:
Atopic, IgE-mediated allergies are one of the major public health problems in Finland and other Western countries. These diseases are characterized by type 2 T helper (Th2) cell predominated immune responses (interleukin-4 (IL-4), IL-5) against ubiquitous environmental allergens. Despite of adequate pharmacological treatment, more than 20% of the patients with allergic rhinitis develop asthma. Allergen specific immunotherapy (SIT) is the only treatment currently available to affect to the natural course of allergic diseases. This treatment involves repeated administration of allergens to the patients either via sublingual route (sublingual immunotherapy, SLIT) or by subcutaneous injections (subcutaneous immunotherapy, SCIT). Successful treatment with SCIT or SLIT has been shown to provide long-term remission in symptoms, and prevent disease progression to asthma, but the immunological mechanisms behind these beneficial effects are not yet completely understood. Increased knowledge of such mechanisms could not only help to improve SIT efficacy, but also provide tools to monitor the development of clinical response to SIT in individual patients, and possibly also, predict the ultimate therapeutic outcome. The aim of this work was to clarify the immunological mechanisms associated with SIT by investigating the specific allergen-induced immune responses in peripheral blood mononuclear cells (PBMC) of allergic rhinitis patients during the course of SLIT and SCIT. The results of this work demonstrate that both therapies induced increases in the protective, Th2-balancing Th1 type immune responses in PBMC, e.g. by up-regulating signaling lymphocytic activation molecule (SLAM) and interferon gamma (IFN-γ) expression, and augmented tolerogenic T regulatory (Treg) cell type responses against the specific allergens, e.g. by increasing IL-10 or Forkhead box P3 (FOXP3) expression. The induction of allergen-specific Th1 and Treg type responses during SLIT were dependent on the treatment dose, favoring high allergen dose SLIT. During SCIT, the early decrease in Th2 type cytokine production - in particular of IL-4 mRNA and IL-4/IFN-γ expression ratio - was associated with the development of good therapeutic outcome. Conversely, increases in both Th2 (IL-5) and Th1 (IFN-γ, SLAM) type responses and IL-10 mRNA production were seen in the patients with less effective outcome. In addition, increase in Th17 type cytokine (IL-17) mRNA production was found in the PBMC of patients with less effective outcome during both SLIT and SCIT. These data strengthen the current hypothesis that immunomodulation of allergen-specific immune responses from the prevailing Th2-biased responses towards a more Th1 type, and induction of tolerogenic Treg cells producing IL-10 represent the two key mechanisms behind the beneficial effects of SIT. The data also give novel insight into the mechanisms why SIT may fail to be effective in some patients by demonstrating a positive correlation between the proinflammatory IL-17 responses, Th2 type IL-5 production and clinical symptoms. Taken together, these data indicate that the analysis of Th1, Th2, Treg ja Th17-associated immune markers such as IL-10, SLAM, IL-4, IL-5 and IL-17 could provide tools to monitor the development of clinical response to SIT, and thereby, predict the ultimate clinical outcome already in the early course of the treatment.
Resumo:
Purpose The purpose of the present study was to evaluate the retinal toxicity of a single dose of intravitreal docosahexaenoic acid (DHA) in rabbit eyes over a short-term period. Methods Sixteen New Zealand albino rabbits were selected for this pre-clinical study. Six concentrations of DHA (Brudy Laboratories, Barcelona, Spain) were prepared: 10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µl, 50 µg/50 µl, 25 µg/50 µl, and 5 µg/50 µl. Each concentration was injected intravitreally in the right eye of two rabbits. As a control, the vehicle solution was injected in one eye of four animals. Retinal safety was studied by slit-lamp examination, and electroretinography. All the rabbits were euthanized one week after the intravitreal injection of DHA and the eyeballs were processed to morphologic and morphometric histological examination by light microscopy. At the same time aqueous and vitreous humor samples were taken to quantify the concentration of omega-3 acids by gas chromatography. Statistical analysis was performed by SPSS 21.0. Results Slit-lamp examination revealed an important inflammatory reaction on the anterior chamber of the rabbits injected with the higher concentrations of DHA (10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µ) Lower concentrations showed no inflammation. Electroretinography and histological studies showed no significant difference between control and DHA-injected groups except for the group injected with 50 µg/50 µl. Conclusions Our results indicate that administration of intravitreal DHA is safe in the albino rabbit model up to the maximum tolerated dose of 25 µg/50 µl. Further studies should be performed in order to evaluate the effect of intravitreal injection of DHA as a treatment, alone or in combination, of different retinal diseases.
Resumo:
Diplomityön tavoitteena on selvittää Loviisan ydinvoimalaitoksen höyryturbiinin hyötysuhteen parantamismahdollisuuksia. Työn kuvaan liittyvät oleellisesti höyryturbiinin siipivyöhykkeiden nopeuskolmioiden sekä hyötysuhteiden laskenta. Höyryturbiinien kehityskaarta sekä turbiinin häviökerrointen laskentayhtälöitä on esitetty useasta eri lähteestä ja vuosikymmeniltä. Työssä selvitettiin uusimpia ydinvoimalaitosten kostea höyryturbiinien suunnitteluperusteita lukuisista eri lähteistä. Kaikkien lähteiden mukaan kostean höyryn alueella tapahtuvaa paisuntaa on haasteellista mallintaa. Työssä on esitelty artikkeleissa tulleita eri näkökulmia höyryturbiinien suorituskyvyn parantamiseksi, sekä rakenteellisia että laskennallisia. Työssä esitellään monia turbiinin virtauksen ja suorituskyvyn laskentamenetelmiä. Esimerkiksi Baumannin säännön laskenta on yksinkertainen tapa käsitellä turbiinin suorituskykyä kostean höyryn alueella. Keskeisimpiä tehtyjä havaintoja oli se, että korkeapaineturbiinin ensimmäisestä vaiheesta löytyi mahdollista parannuspotentiaalia Loviisaan ydinvoimalaitoksen tehon lisäämiseksi. Ensimmäisessä vaiheessa on oletettu siipien olevan Laval –tyyppisiä, mutta käytännössä näin ei ole. Korkeapaineturbiinin nykyisen turbosuuttimen toimintaa voitaisiin tehostaa. Lisäksi Loviisan matalapaineturbiinin viimeisen siipivaiheen jälkeen aiheutuu suuret ulosvirtaushäviöt. Osa suurinopeuksisen virtauksen energiasta pystyttäisiin kuitenkin hyödyntämään vielä ulosvirtauskanavassa olevalla diffuusorilla.
Resumo:
The objective of the thesis was to examine the possibilities in designing better performing nozzles for the heatset drying oven in Forest Pilot Center. To achieve the objective, two predesigned nozzle types along with the replicas of the current nozzles in the heatset drying oven were tested on a pilot-scale dryer. During the runnability trials, the pilot dryer was installed between the last printing unit and the drying oven. The two sets of predesigned nozzles were consecutively installed in the dryer. Four web tension values and four different impingement air velocities were used and the web behavior during the trial points was evaluated and recorded. The runnability in all trial conditions was adequate or even good. During the heat transfer trials, each nozzle type was tested on at least two different nozzle-to-surface distances and four different impingement air velocities. In a test situation, an aluminum plate fitted with thermocouples was set below a nozzle and the temperature measurement of each block was logged. From the measurements, a heat transfer coefficient profile for the nozzle was calculated. The performance of each nozzle type in tested conditions could now be rated and compared. The results verified that the predesigned simpler nozzles were better than the replicas. For runnability reasons, there were rows of inclined orifices on the leading and trailing edges of the current nozzles. They were believed to deteriorate the overall performance of the nozzle, and trials were conducted to test this hypothesis. The perpendicular orifices and inclined orifices of a replica nozzle were consecutively taped shut and the performance of the modified nozzles was measured as before, and then compared to the performance of the whole nozzle. It was found out, that after a certain nozzle-to-surface distance the jets from the two nozzles would collide, which deteriorates the heat transfer.
Resumo:
This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.
Resumo:
The study aimed to determine an optimum angle for the nozzles axial-flow sprayers a deposition for better vertical distribution focused on cashew. In laboratory tests were conducted adjusting the angle of the nozzle axial-flow sprayers. The experimental design was randomized blocks in a 2x3 factorial with four replications. The treatment for this test were two settings (with and without the adjustment of the angles of the nozzles ) and tree application volumes 273, 699 and 954 L ha-¹.The study was conducted in an orchard of dwarf cashew, with eight years of age. It was concluded that the volumetric distribution profile showed better vertical distribution uniformity when the angles of the nozzles were regulated for the canopy, the adjustment of the angles of the nozzles for the canopy provided greater deposition of droplets, the increased volume of application resulted in higher depositions in the leaves of the crop.
Resumo:
The objective of this study was to characterize water application rate, water application pattern width, flow rate, water distribution uniformity and soil loss caused by nozzles of the Low Energy Precision Aplication (LEPA) type Quad-Spray emitter. The study was carried out at the Hydraulic and Irrigation Laboratory of the Department of Engineering at the Federal University of Lavras, in Lavras, state of Minas Gerais - MG, Brazil. Twenty-two (22) LEPA Quad-Spray emitter nozzles were evaluated, with nozzle diameter ranging from 1.59 to 9.92 mm. The experimental design used was entirely randomized, with three replications.Increasing values of nozzle flow rate ranging from 77.44 up to 3,044 L h-1, were obtained with increasing nozzle diameter sizes. Application pattern width ranged from 0.56 up to 3.24m, according to nozzles diameter size. Low values of CDU (maximum of 35.73%) were observed when using the Quad-Spray nozzles. Observed average water application rates covered the range between 68.05 mm h-1 (the lowest value that was obtained with the 2.38mm nozzle) and 258.15 mm h-1 (the highest value that was observed with the 9.92 mm). Average water application rates increased in a simple non-linear function with the increase of nozzle size diameter. However, the weighted average increase in the amount of soil loss by erosion was not related to the increase of weighted average water application values.
Resumo:
The reduction of pesticide spraying drift is still one of the major challenges in Brazilian agriculture. The aim of this study was to evaluate the potential of different adjuvant products, such as surfactants, drift retardants, mineral oil and vegetable oil for reducing drift in agricultural spraying. The experiment consisted of quantifying drift of sprayings of 18 adjuvants dissolved in water under controlled conditions in a wind tunnel. Tests were performed in triplicates with spraying nozzles type Teejet XR8003 VK, pressure of 200kPa and medium drops. Solutions sprayed were marked with Brilliant Blue dye at 0.6% (m v-1). The drift was collected using polyethylene strips transversally fixed along the tunnel at different distances from the nozzle and different heights from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry in order to quantify deposits. The adjuvants from chemical groups of mineral oil and drift retardant resulted in lower values of drift in comparison with surfactants and water. The results obtained in laboratory show that the selection of appropriate class and concentration of adjuvants can significantly decrease the risk of drift in agricultural spraying. However, the best results obtained in laboratory should be validated with pesticide under field conditions in the future.
Resumo:
Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.
Resumo:
ABSTRACTScarlet Morning Glory is considered to be an infesting weed that affects several crops and causes serious damage. The application of chemical herbicides, which is the primary control method, requires a broad knowledge of the various characteristics of the solution and application technology for a more efficient phytosanitary treatment. Therefore this study aimed to characterize the effect of rainfall incidence on the control of Ipomoea hederifolia, considering droplet size, surface tension, contact angle of droplets formed by herbicides liquid on vegetal and artificial surfaces, associated to adjuvants and the volumetric distribution profile of the spray jet. The addition of the adjuvants to the herbicide spraying liquid improved the application quality, as it influenced the angle formed by the spray by broadening the deposition band of the spray nozzle and thus the possible distance between the nozzles on spray boom and due the changes at droplet size, which contribute to a safety application. The rainfall occurrence affected negatively the weed control with the different spraying liquids and also the dry matter weight, suggesting that the phytosanitary product applied was washed off.
Resumo:
ABSTRACT Tractor traveling speed can influence the quality of spraying depending on the application technology used. This study aimed to evaluate the droplet spectrum, the deposition and uniformity of spray distribution with different spraying systems and traveling speeds of a self-propelled sprayer in two phenological stages of the cotton plant (B9 and F13). The experimental design was randomized blocks and treatments were three spraying techniques: common flat spray tips; tilted flat jet with air induction, at 120 L ha-1; and rotary atomizer disk, 20 L ha-1, combined with four traveling speeds: 12, 15, 18 and 25 km h-1, with four replications. Spraying deposition was evaluated for both leaf surfaces from the cotton plant apex and base (stage B9) and middle part of the plant (stage F13) with a cupric marker. A laser particle analyzer also assessed the droplet spectrum. The centrifugal power spray system produces more homogeneous droplet spectrum and increased penetration of droplets into the canopy in both phenological stages. Variation on the operating conditions necessary for increased traveling speed negatively influences the pattern of spraying deposits.
Resumo:
ABSTRACT Microsprinkler non-pressure compensating nozzles usually show water flow variation along the lateral line. This study aimed at adapting microtubes into non-compensating system of microsprinklers previous installed in the field, as a self-compensated nozzle, to improve the flow uniformity along the lateral line. Microtubes were adapted to three types of commercial microsprinklers. Tests were conducted, both in the laboratory and in field, to evaluate the microsprinkler performance at four different flows (40, 50, 60 and 70 L h-1) under pressure head range from 75 to 245 kPa. Nozzles presented coefficient of flow-rate variation (CVq) lower than 5.5% and distribution uniformity (DU) greater than 95%, which are classified as excellent. The original spatial water distribution of the microsprinkler did not change by using microtube as a nozzle. This device adapted to non-pressure compensating microsprinklers are functional and operate effectively with flows ranging up to 70 L h-1. Small variations at microsprinkler flows along the lateral line can occur, however, at random manner, which is common for pressure-compensating nozzles. Therefore, the microtube technique is able to control pressure variation in microsprinklers.
Resumo:
Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormacks implicit algorithm with Steger and Warmings flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
ABSTRACTInadequate herbicide application can result in failures in weed control and/or poisoning of the crops, resulting in yield losses. In this research were assessed the effects of the sprayer nozzle boom height in the distribution of the spray solution for weed control, influencing intoxication of beans and crop yield. Experiments were conducted in laboratory and field conditions. In laboratory, the performance of flat spray tip TT 11002 was assessed at heights 0.20, 0.30, 0.40 and 0.50 meters with respect to the target surface. In the field the same heights were assessed in applications of herbicides fomesafen, fluazifop-P-butyl and fomesafen + fluazifop-P-butyl. There was an inverse relationship between the height of the spray boom and the coefficients of variation of the patterns. The mixture better efficiency in a tank of fluazifop-P-butyl + fomesafen was obtained with the height of 0.50 m from the target. This treatment resulted in better weed control, lower poisoning of the bean plants and better crop yield rates.