975 resultados para Sinus floor elevation
Resumo:
Five short bottom sediment cores taken in Wakulla Spring Wakulla County, Florida, were described lithologically and sampled for palynological study. Four of the cores were recoveredfrom sediments at the spring cave entrance (130 feet water depth). One core was taken in a fossil vertebrate bone bed, 280 feet distance into the main spring cave at a water depth of 240 feet. Sediments in the cores are composed of alternating intervals of quartz sand and calcilitite, containing freshwater diatoms, freshwater mollusk shells and plant remains. The predominant pollen present in all cores consists of a periporate variety typical of the herb families Chenopodiaceae and Amaranthaceae. Arboreal flora, typical of the area surrounding the spring today, represent a very low percentage of thle pollen assemblage in the cores. Clustered Chenopod-Amaranth type pollen observed in one core suggest minimal transport prior to deposition, and indicate that the bottom sediments in the cave may be essentially In situ. An absence of exotic flora suggests a Quaternary age for the sediments. (PDF contains 11 pages.)
Resumo:
Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18 degrees S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.
Resumo:
Harry Hess's hypothesis of sea-floor spreading brought together his long-standing interests in island arcs, oceanic topography, and the oceanic crust. The one unique feature of Hess's hypothesis was the origin of the oceanic crust as a hydration rind on the top of the mantle -- an idea that was not well received, even by the early converts to sea-floor spreading. Hess never changed his mind on this issue, and his stubbornness illuminates the logic of his discovery. Published and archival records show that 1) Hess became convinced the oceanic crust was a hydration rind as early as mid 1958, when he was still a fixist, 2) he devised sea-floor spreading in 1960 to reconcile the hydration-rind model with the newly discovered, high heat flow at oceanic ridge crests, and 3) Hess's new mobilist solution did the least amount of violence to his older fixist solution.
Resumo:
Four decades of instrumented climate records at D1 on Niwot Ridge suggest that high elevation data are an important - and even unique - part of the full climate picture. High elevation data provide information on changing lapse rates as well as model verification for global warming, which is predicted to occur earliest in high latitudes and at high elevations. The D1 records show climatic trends that arguably support global warming, assuming that greater planetary wave amplitude is verification of warming. Lapse rates reflect conditions of air mass stability, atmospheric moisture, and could [sic] cover, which contribute to feedback processes involving temperature, precipitation, and snowpack. The D1 record show a period, 1981-1985, when the lapse rate increased significantly, and this change was not detected by other data.