882 resultados para Simulation and prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat capacities of nine ionic liquids were measured from (293 to 358) K by using a heat flux differential scanning calorimeter. The impact of impurities (water and chloride content) in the ionic liquid was analyzed to estimate the overall uncertainty. The Joback method for predicting ideal gas heat capacities has been extended to ionic liquids by the generation of contribution parameters for three new groups. The principle of corresponding states has been employed to enable the subsequent calculation of liquid heat capacities for ionic liquids, based on critical properties predicted using the modified Lydersen-Joback-Reid method, as a function of the temperature from (256 to 470) K. A relative absolute deviation of 2.9% was observed when testing the model against 961 data points from 53 different ionic liquids reported previously and measured within this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental values for the carbon dioxide solubility in eight pure electrolyte solvents for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), ?-butyrolactone (?BL), ethyl acetate (EA) and methyl propionate (MP) – are reported as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility data, the Henry’s law constant of the carbon dioxide in these solvents was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOthermX software and those calculated by the Peng–Robinson equation of state implemented into Aspen plus. From this work, it appears that the CO2 solubility is higher in linear carbonates (such as DMC, EMC, DEC) than in cyclic ones (EC, PC, ?BL). Furthermore, the highest CO2 solubility was obtained in MP and EA solvents, which are comparable to the solubility values reported in classical ionicliquids. The precision and accuracy of the experimental values, considered as the per cent of the relative average absolute deviations of the Henry’s law constants from appropriate smoothing equations and from literature values, are close to (1% and 15%), respectively. From the variation of the Henry’s law constants with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs free energy, the enthalpy, and the entropy are calculated, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present in this study the effect of nature and concentration of lithium salt, such as the lithium hexafluorophosphate, LiPF6; lithium tris(pentafluoroethane)-trifluorurophosphate LiFAP; lithium bis(trifluoromethylsulfonyl)imide, LiTFSI, on the CO2 solubility in four electrolytes for lithium ion batteries based on pure solvent that include ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), as well as, in the EC:DMC, EC:EMC and EC:DEC (50:50) wt.% binary mixtures as a function of temperature from (283 to 353) K and atmospheric pressure. Based on experimental solubility values, the Henry’s law constant of the carbon dioxide in these solutions with the presence or absence of lithium salt was then deduced and compared with reported values from the literature, as well as with those predicted by using COSMO-RS methodology within COSMOThermX software. From this study, it appears that the addition of 1 mol · dm-3 LiPF6 salt in alkylcarbonate solvents decreases their CO2 capture capacity. By using the same experimental conditions, an opposite CO2 solubility trend was generally observed in the case of the addition of LiFAP or LiTFSI salts in these solutions. Additionally, in all solutions investigated during this work, the CO2 solubility is greater in electrolytes containing the LiFAP salt, followed by those based on the LiTFSI case. The precision and accuracy of the experimental data reported therein, which are close to (1 and 15)%, respectively. From the variation of the Henry’s law constant with temperature, the partial molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvent with CO2 in its hypothetical liquid state were calculated. Finally, a quantitative analysis of the CO2 solubility evolution was carried out in the EC:DMC (50:50) wt.% binary mixture as the function of the LiPF6 or LiTFSI concentration in solution to elucidate how ionic species modify the CO2 solubility in alkylcarbonates-based Li-ion electrolytes by investigating the salting effects at T = 298.15 K and atmospheric pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents novel advances on the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: Indentation of polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical (arc) indenter, and indentation of a single crystal silicon substrate with these two indenters. The simulation results reveal that high pressure phase transformation (HPPT) in silicon (Si-I to Si-II phase transformation) occurred in all cases, however, its extent and the manner in which it occurred differed significantly between polycrystalline silicon and single crystal silicon, and was the main driver of differences in nanoindentation deformation behaviour between the two types of silicon. An interesting observation was that in polycrystalline silicon, the HPPT was observed to occur preferentially along the grain boundaries than across the grain boundaries. An automated dislocation extraction algorithm (DXA) revealed no dislocations in the deformation zone, suggesting HPPT to be the primary mechanism in inducing plasticity in silicon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,

&lt;img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif"&gt;PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP; bis(trifluoromethylsulfonyl)imide, TFSI) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ensuring sustainable development conditions is presently world widely recognized as a critically important goal. This makes the use of electricity generation technologies based on renewable energy sources very relevant. Developing countries depend on an adequate availability of electrical energy to assure economic progress and are usually characterized by a high increase in electricity consumption. This makes sustainable development a huge challenge but it can also be taken as an opportunity, especially for countries which do not have fossil resources. This paper presents a study concerning the expansion of an already existent wind farm, located in Praia, the capital of Cape Verde Republic. The paper includes results from simulation studies that have been undertaken using PSCAD software and some economic considerations.