1000 resultados para Silver alloys
Resumo:
The β-phase aging response of Cu–Al–Ni single crystal shape memory alloys (SMAs) within the temperature range of 473–573 K has been investigated. Alloys in austenitic (Cu–14.1Al–4Ni wt.%, alloy A) and martensitic (Cu–13.4Al–4Ni wt.%, alloy M) conditions at room temperature were considered. Aged samples show presence of β1′ and γ1′ martensites in both the alloys and formation of γ2 precipitates in the alloy A. The differential scanning calorimetry (DSC) thermograms of the aged samples show increase in transformation temperatures as well as transformation hysteresis with aging. Dynamic mechanical analysis (DMA) was conducted on both the alloys to ascertain the role of precipitates and martensitic transition on tan δ, which characterizes the damping behaviour of the material. With aging, a steady decrease in tan δ value was observed in both the alloys, which was attributed to the decrease in the number of interfaces per unit area with increasing aging temperature. Moreover, in alloy A, as the volume fraction of precipitate increases with aging, the movement of martensitic interfaces is restricted causing a decreased tan δ.
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The complexes, Ba (HQS) (H2O)(4) (HQS = 8-hydroxyquinoline-5-sulfonic acid) (1) and Ag (HIQS) (H2O) (Ferron = 7-iodo-8-hydroxyquinoline-5-sulfonic acid) (2) have been synthesized and characterized by X-ray diffraction analysis and spectroscopic studies. In compound 1, Ba2+ ion has a nine-coordinate monocapped antiprismatic geometry. In compound 2, Ag+ has distorted tetrahedral coordination and Ag center dot center dot center dot I interactions generate the supramolecular architectures. The complexes have been characterized by FT-IR and UV-Visible measurements. In both the structures, the inversion-related organic ligands are stacked over one another leading to three-dimensional networks.
Resumo:
We demonstrate that commonly face-centered cubic (fcc) metallic nanowires can be stabilized in hexagonal structures even when their surface energy contribution is relatively small. With a modified electrochemical growth process, we have grown purely single-crystalline 4H silver nanowires (AgNWs) of diameters as large as 100 nm within nanoporous anodic alumina and polycarbonate templates. The growth process is not limited by the/Ag Nernst equilibrium potential, and time-resolved imaging with high-resolution transmission electron microscopy (TEM) indicates a kinematically new mechanism of nanowire growth. Most importantly, our experiments aim to separate the effects of confinement and growth conditions on the crystal structure of nanoscale systems.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
From the quaternary Ti-Zr-Hf-Ni phase diagram. the cross-section at 20 at % Ni was selected for investigation. The icosahedral quasicrystalline, crystalline and amorphous phases were observed to form in nine kinds of rapidly solidified (TixZryHfz)(80)Ni-20 (x + y + z = 1) alloys at different compositions. The quasilattice constants of 0.519 and 0.531 nm were obtained for the icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 and Ti20Zr40Hf20Ni20 alloys. respectively. The icosahedral phase formed in the melt-spun Ti40Zr20Hf20Ni20 alloy especially is thermodynamically stable. The supercooled liquid region of the Ti20Zr20Hf40Ni20 glassy alloy reached 64 K. From these results a comparison of quasicrystal-forming and glass-forming abilities, was carried out. The quasicrystal-forming ability was reduced and glass-forming ability was improved with an increase in Hf and Zr contents in the (TixZryHfz)(80)Ni-20 alloys. On the other hand. an increase in Ti content caused an improvement in quasicrystal-forming ability.
Resumo:
he infrared absorption spectra of glycine silver nitrate (GAgNO3) and glycine nitrate (GHNO3) show that the glycine group exists completely in the zwitter ion form in the former and in both forms in the latter. The spectrum of GAgNO3 at liquid air temperature did not reveal any striking change which can be attributed to a freezing of the rapid reorientation of the NH3+ group taking place at higher temperatures. The position of the COO− stretching frequencies indicate that this group is co-ordinated only weakly to the Ag+ ion. The summation frequencies reported by Schroeder, Wier and Lippincott (1962) for AgNO3 were not observed in the present study on GAgNO3. It shows however that ferroelectricity in GAgNO3 is in all probability due to the motion of the Ag+ ion in the oxygen co-ordination polyhedron and is not directly connected with the ordering of the hydrogen bonds below Curie point.
Resumo:
The Ramberg-Osgood relation which adequately describes the stress-strain curve of a strain-hardening material is extended to formulate the constitutive laws for creep. The constitutive laws which describe primary creep adequately are extended to secondary creep. The results are verified for the case of R.R. 59 at 200°C, Nimonic 80A and Nimonic 90 alloys at 750°C.
Resumo:
The dislocation mechanisms for plastic flow in quenched AlMg alloys with 0.45, 0.9, 2.7 and 6.4 at. % Mg were investigated using tensile tests and change-in-stress creep experiments in the temperaturhttp://eprints.iisc.ernet.in/cgi/users/home?screen=EPrint::Edit&eprintid=28109&stage=core#te range 87° -473° K. The higher the magnesium content in the alloy, the higher was the temperature dependence of flow stress. The alloys showed no perceptible creep in the vicinity of room temperature, while they crept at lower as well as higher temperatures. The most probable cause of hardening at temperatures below ∼ 200° K was found to be the pinning of dislocations by randomly distributed solute atoms, while athermal locking of dislocations by dynamic strain ageing during creep was responsible for the negligibly small creep rate in the room temperature range.