842 resultados para Silk fibroin scaffold
Resumo:
OBJECTIVES This study sought to describe the frequency and clinical impact of acute scaffold disruption and late strut discontinuity of the second-generation Absorb bioresorbable polymeric vascular scaffolds (Absorb BVS, Abbott Vascular, Santa Clara, California) in the ABSORB (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions) cohort B study by optical coherence tomography (OCT) post-procedure and at 6, 12, 24, and 36 months. BACKGROUND Fully bioresorbable scaffolds are a novel approach to treatment for coronary narrowing that provides transient vessel support with drug delivery capability without the long-term limitations of metallic drug-eluting stents. However, a potential drawback of the bioresorbable scaffold is the potential for disruption of the strut network when overexpanded. Conversely, the structural discontinuity of the polymeric struts at a late stage is a biologically programmed fate of the scaffold during the course of bioresorption. METHODS The ABSORB cohort B trial is a multicenter single-arm trial assessing the safety and performance of the Absorb BVS in the treatment of 101 patients with de novo native coronary artery lesions. The current analysis included 51 patients with 143 OCT pullbacks who underwent OCT at baseline and follow-up. The presence of acute disruption or late discontinuities was diagnosed by the presence on OCT of stacked, overhung struts or isolated intraluminal struts disconnected from the expected circularity of the device. RESULTS Of 51 patients with OCT imaging post-procedure, acute scaffold disruption was observed in 2 patients (3.9%), which could be related to overexpansion of the scaffold at the time of implantation. One patient had a target lesion revascularization that was presumably related to the disruption. Of 49 patients without acute disruption, late discontinuities were observed in 21 patients. There were no major adverse cardiac events associated with this finding except for 1 patient who had a non-ischemia-driven target lesion revascularization. CONCLUSIONS Acute scaffold disruption is a rare iatrogenic phenomenon that has been anecdotally associated with anginal symptoms, whereas late strut discontinuity is observed in approximately 40% of patients and could be viewed as a serendipitous OCT finding of a normal bioresorption process without clinical implications. (ABSORB Clinical Investigation, Cohort B [ABSORB B]; NCT00856856).
Resumo:
Aims: To evaluate the implications of an Absorb bioresorbable vascular scaffold (Absorb BVS) on the morphology of the superficial plaques. Methods and results: Forty-six patients who underwent Absorb BVS implantation and 20 patients implanted with bare metal stents (BMS) who had serial optical coherence tomographic examination at baseline and follow-up were included in this analysis. The thin-capped fibroatheromas (TCFA) were identified in the device implantation regions and in the adjacent native coronary segments. Within all regions, circumferential locations of TCFA and calcific tissues were identified, and the neointimal thickness was measured at follow-up. At six to 12-month follow-up, only 8% of the TCFA detected at baseline were still present in the Absorb BVS and 27% in the BMS implantation segment (p=0.231). Sixty percent of the TCFA in native segments did not change their phenotype at follow-up. At short-term follow-up, significant reduction in the lumen area of the BMS was noted, which was higher compared to that reported in the Absorb BVS group (-2.11±1.97 mm2 vs. -1.34±0.99 mm2, p=0.026). In Absorb BVS, neointima tissue continued to develop at midterm follow-up (2.17±0.48 mm2 vs. 1.38±0.52 mm2, p<0.0001) and covered the underlying tissues without compromising the luminal dimensions (5.93±1.49 mm2 vs. 6.14±1.49 mm2, p=0.571) as it was accommodated by the expanded scaffold (8.28±1.74 mm2 vs. 7.67±1.28 mm2, p<0.0001). Conclusions: Neointimal tissue develops following either Absorb BVS or BMS implantation and shields lipid tissues. The neointimal response in the BMS causes a higher reduction of luminal dimensions compared to the Absorb BVS. Thus, Absorb BVS may have a value in the invasive re-capping of high-risk plaques.
Resumo:
Aims: To investigate the extent and the circumferential distribution of the neointima tissue developed following an Absorb bioresorbable vascular scaffold (BVS) implantation. Methods and results: Twenty-three patients who were treated with the Absorb BVS and had optical coherence tomographic examination after scaffold implantation, at six-month and at two-year follow-up, were included in the current analysis. The lumen and the scaffold borders were detected and the circumferential thickness of the neointima was measured at one degree intervals. The symmetry of the neointima was defined as: minimum/maximum thickness. The lumen area was decreased at six months compared to baseline but it did not change between six-month and two-year follow-up (baseline: 7.49 [6.13-8.00] mm2, six months: 6.31 (4.75-7.06) mm2, two years: 6.01 [4.67-7.11] mm2, p=0.373). However, the mean neointima thickness (six months: 189 [173-229] μm, two years: 258 [222-283] μm, p<0.0001) and the symmetry index of the neointima (six months: 0.06 [0.02-0.09], two years: 0.27 [0.24-0.36], p<0.0001) were increased at two years. Full circumferential coverage of the vessel wall by neointima tissue was seen in 91% of the studied frames at two years. Conclusions: This study demonstrates that after an Absorb BVS implantation neointima tissue develops that covers almost the whole circumference of the vessel wall. In contrast to the metallic stents, the neointima tissue does not compromise the luminal dimensions. Further research is required to evaluate the neointimal characteristics and assess the potential value of the device in passivating high-risk plaques.
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
Resumo:
Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. Statement of significance Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.
Resumo:
Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.
Resumo:
Introduction Low back pain is often caused by a trauma causing disc herniation and /or disc degeneration. Although there are some promising approaches for nucleus pulposus repair, the inner tissue of the intervertebral disc (IVD) so far no treatment or repair is available for annulus fibrosus (AF) injuries. Here we aimed to develop a new method to seal and repair AF injuries by using a silk fleece composite and a genipin enhanced hydrogel. Methods Bovine (b) IVDs were harvested under aseptic conditions and kept in free swelling conditions for 24h in high-glucose DMEM containing 5% bovine serum for equilibration (1). A circular 2mm biopsy punch (Polymed Medical Center, Switzerland) was used to form a reproducible defect in the AF. For filling the defect and keeping the silk composite in place a human-derived fibrin gel (Baxter Tisseel, Switzerland) enhanced with 4.2mg/ml of the cross linker genipin (Wako Chemicals GmbH, Germany) was used. The silk composite consists of a mesh- and a membrane side (Spintec Engineering GmbH, Germany); the membrane is facing outwards to form a seal. bIVDs were cultured in vitro for 14 days either under dynamic load in a custom-built bioreactor under physiological conditions (0.2MPa load and ±2° torsion at 0.2Hz for 8h/day) or static diurnal load of 0.2MPa (2). At the end of culture discs were checked for seal failure, disc height, metabolic activity, cell death by necrosis (LDH assay), DNA content and glycosaminoglycan content. Results Silk composite maintained its position throughout the 14 days of culture under loaded conditions. Although repaired discs performed slightly lower in cell activity, DNA and GAG content were in the range of the control. Also LDH resulted in similar values compared to control discs (Fig 1). Height loss in repaired discs was in the same range as for static diurnal loaded control samples. For dynamically loaded samples the decrease was comparable to the injured, unrepaired discs. Fig 1 LDH of repaired discs compared to control disc after 24h in free swelling conditions for equilibration and first three loading cycles. Conclusions Silk-genipin-fibrin reinforced hydrogel is a promising approach to close AF defects as tested by two degree of freedom loading. In further experiments cytocompatibility of genipin has to be investigated. References 1. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. 2. Walser J, Ferguson SJ, Gantenbein-Ritter B. Design of a mechanical loading device to culture intact bovine caudal motional segments of the spine under twisting motion. In: Davies J, editors. Replacing animal models: a practical guide to creating and using biomimetic alternatives. Chichester, UK: John Wiley & Sons, Ltd.; 2012. p. 89-105. Acknowledgements This project is funded by the Gerbert Rüf Stiftung project # GRS-028/13 and the Swiss National Science Project SNF #310030_153411.
Resumo:
BACKGROUND Bioresorbable scaffolds provide transient lumen support followed by complete resorption. OBJECTIVES This study examined whether very late scaffold thrombosis (VLScT) occurs when resorption is presumed to be nearly complete. METHODS Patients with VLScT at 3 tertiary care centers underwent thrombus aspiration followed by optical coherence tomography (OCT). Thrombus aspirates were analyzed by histopathological and spectroscopic examination. RESULTS Between March 2014 and February 2015, 4 patients presented with VLScT at 44 (case 1), 19 (cases 2 and 4), and 21 (case 3) months, respectively, after implantation of an Absorb Bioresorbable Vascular Scaffold 1.1 (Abbott Laboratories, Abbott Park, Illinois). At the time of VLScT, all patients were taking low-dose aspirin, and 2 patients were also taking prasugrel. OCT showed malapposed scaffold struts surrounded by thrombus in 7.1%, 9.0%, and 8.9% of struts in cases 1, 2, and 4, respectively. Scaffold discontinuity with struts in the lumen center was the cause of malapposition in cases 2 and 4. Uncovered scaffold struts with superimposed thrombus were the predominant findings in case 3. OCT percent area stenosis at the time of VLScT was high in case 1 (74.8%) and case 2 (70.9%) without evidence of excessive neointimal hyperplasia. Spectroscopic thrombus aspirate analysis showed persistence of intracoronary polymer fragments in case 1. CONCLUSIONS VLScT may occur at advanced stages of scaffold resorption. Potential mechanisms specific for VLScT include scaffold discontinuity and restenosis during the resorption process, which appear delayed in humans; these findings suggest an extended period of vulnerability for thrombotic events.