997 resultados para Signal generation
Resumo:
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 Angstrom resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.
Resumo:
Serious infestations of Helicoverpa punctigera are experienced yearly in the eastern cropping regions of Australia. Regression analysis was used to determine whether the size of the first generation in spring (G(1)), which is comprised mostly of immigrants from inland Australia, was related to monthly rainfall in inland winter breeding areas. Data from two long series of light-trap catches at Narrabri in New South Wales (NSW) and Turretfield in South Australia (SA) were used in the analyses. The size of G1 at Narrabri in each year was significantly regressed on the amount of rainfall in western Queensland and NSW in May and June. The size of G1 at Turretfield each year was significantly regressed on the amount of rain in May, June and July in western Queensland and NSW and also in the desert of central Western Australia. Low r(2) values of the regressions suggest that rainfall data for more sites, as well as biological and other physical factors, such as temperature, evaporation, and prevailing wind systems, may need to be included to improve forecasts of the potential magnitude of the infestations in coastal cropping regions.
Resumo:
Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonbese diabetic (NOD) mice, recombinant congenic nonbese diabetes-resistant (NOR) mice, and unrelated BALB/c and C57BL/6 (BL/6) mice. In GM-CSF/IL-4-supplemented bone marrow cultures, DC developed in significantly greater numbers from NOD than from NOR, BALB/c, and BL/6 mice. Likewise, DC developed in greater numbers from sorted (lineage(-)IL-7Ralpha(-)SCA-1(-)c-kit(+)) NOD myeloid progenitors in either GM-CSF/IL-4 or GM-CSF/stem cell factor (SCF)/TNF-alpha. [H-3]TdR incorporation indicated that the increased generation of NOD DC was due to higher levels of myeloid progenitor proliferation. Generation of DC with the early-acting hematopoietic growth factor, flt3 ligand, revealed that while the increased DC-generative capacity of myeloid-committed progenitors was restricted to NOD cells, early lineage-uncommitted progenitors from both NOD and NOR had increased DC-gencrative capacity relative to BALB/c and BL/6. Consistent with these findings, NOD and NOR mice had increased numbers of DC in blood and thymus and NOD had an increased proportion of the putative myeloid DC (CD11c(+)CD11b(+)) subset within spleen. These findings demonstrate that diabetes-prone NOD mice exhibit a myeloid lineage-specific increase in DC generative capacity relative to diabetes-resistant recombinant congenic NOR mice. We propose that an imbalance favoring development of DC from myeloid-committed progenitors predisposes to autoimmune disease in NOD mice.
Resumo:
This paper provides a detailed analysis of patterns of income generation among 202 active heroin users in South West Sydney. We explore both sources of income and the relative contribution of different types of income generating activities, including drug sales and related activities, property crime, prostitution, legitimate income and avoided expenditures. Despite claims that heroin use leads inevitably to property crime, drug market activities accounted for a greater proportion of drug user income in this sample. Results indicate that law enforcement crackdowns that reduce opportunities for generating income from the drug market may increase property crime by heroin users.
Resumo:
Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Resumo:
Hydroalumination of thioacetylenes using DIBAL-H and lithium di-(isobutyl)-n-(butyl)-aluminate hydride (Zweifel`s reagent), followed by addition of water, furnished exclusively the (Z)- and (E)-vinyl sulfides, respectively. The regio- and stereochemistry of the intermediates generated, (Z)- and (E)-phenylthio vinyl alanates, were determined by capture with iodine, which afforded the corresponding (E)- and (Z)-1-iodo-1-phenylthio-2-organoyl ethenes. Reactions of the (E)-iodo(thio)ketene acetals with n-BuLi followed by addition of hexanal afforded the (Z)-phenylthio allylic alcohol, while the (Z)-iodo(thio)ketene acetals under similar reactions conditions gave the (E)-phenylthio allylic alcohol exclusively.
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Conducting dielectric samples are often used in high-resolution experiments at high held. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred, Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect. (C) 1997 Academic Press.
Resumo:
OBJECTIVE. The objective of our study was to describe the T1 and T2 signal intensity characteristics of papillary renal cell carcinoma (RCC) and clear cell RCC with pathologic correlation. MATERIALS AND METHODS. Of 539 RCCs, 49 tumors (21 papillary RCCs and 28 clear cell RCCs) in 45 patients were examined with MRI. Two radiologists retrospectively and independently assessed each tumor`s T1 and T2 signal intensity qualitatively and quantitatively (i.e., the signal intensity [SI] ratio [tumor SI/renal cortex SI]). Of the 49 tumors, 37 (76%) were assessed for pathology features including tumor architecture and the presence of hemosiderin, ferritin, necrosis, and fibrosis. MRI findings and pathology features were correlated. Statistical methods included summary statistics and Wilcoxon`s rank sum test for signal intensity, contingency tables for assessing reader agreement, concordance rate between the two readers with 95% CIs, and Fisher`s exact test for independence, all stratified by RCC type. RESULTS. Papillary RCCs and clear cell RCCs had a similar appearance and signal intensity ratio on T1-weighted images. On T2-weighted images, most papillary RCCs were hypointense (reader 1, 13/21; reader 2, 14/21), with an average mean signal intensity ratio for both readers of 0.67 +/- 0.2, and none was hyperintense, whereas most clear cell RCCs were hyperintense (reader 1, 21/28; reader 2, 17/28), with an average mean signal intensity ratio for both readers of 1.41 +/- 0.4 (p < 0.05). A tumor T2 signal intensity ratio of <= 0.66 had a specificity of 100% and sensitivity of 54% for papillary RCC. Most T2 hypointense tumors exhibited predominant papillary architecture; most T2 hyperintense tumors had a predominant nested architecture (p < 0.05). CONCLUSION. On T2-weighted images, most papillary RCCs are hypointense and clear cell RCCs, hyperintense. The T2 hypointense appearance of papillary RCCs correlated with a predominant papillary architecture at pathology.