932 resultados para Sigmoid Formatting Rules
Resumo:
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning rules emerge from a policy gradient approach depending on which features of the spike trains are assumed to influence the reward signals, i.e., depending on which neural code is in effect. We use the framework of Williams (1992) to derive learning rules for arbitrary neural codes. For illustration, we present policy-gradient rules for three different example codes - a spike count code, a spike timing code and the most general "full spike train" code - and test them on simple model problems. In addition to classical synaptic learning, we derive learning rules for intrinsic parameters that control the excitability of the neuron. The spike count learning rule has structural similarities with established Bienenstock-Cooper-Munro rules. If the distribution of the relevant spike train features belongs to the natural exponential family, the learning rules have a characteristic shape that raises interesting prediction problems.
Resumo:
A symmetry-adapted version of the Maxwell rule appropriate to periodic bar-and-joint frameworks is obtained, and is further extended to body-and-joint systems. The treatment deals with bodies and forces that are replicated in every unit cell, and uses the point group isomorphic to the factor group of the space group of the framework. Explicit expressions are found for the numbers and symmetries of detectable mechanisms and states of self-stress in terms of the numbers and symmetries of framework components. This approach allows detection and characterization of mechanisms and states of self-stress in microscopic and macroscopic materials and meta-materials. Illustrative examples are described. The notion of local isostaticity of periodic frameworks is extended to include point-group symmetry.
Resumo:
Spatial relations, reflecting the complex association between geographical phenomena and environments, are very important in the solution of geographical issues. Different spatial relations can be expressed by indicators which are useful for the analysis of geographical issues. Urbanization, an important geographical issue, is considered in this paper. The spatial relationship indicators concerning urbanization are expressed with a decision table. Thereafter, the spatial relationship indicator rules are extracted based on the application of rough set theory. The extraction process of spatial relationship indicator rules is illustrated with data from the urban and rural areas of Shenzhen and Hong Kong, located in the Pearl River Delta. Land use vector data of 1995 and 2000 are used. The extracted spatial relationship indicator rules of 1995 are used to identify the urban and rural areas in Zhongshan, Zhuhai and Macao. The identification accuracy is approximately 96.3%. Similar procedures are used to extract the spatial relationship indicator rules of 2000 for the urban and rural areas in Zhongshan, Zhuhai and Macao. An identification accuracy of about 83.6% is obtained.
Resumo:
Identifying protein-protein interactions is crucial for understanding cellular functions. Genomic data provides opportunities and challenges in identifying these interactions. We uncover the rules for predicting protein-protein interactions using a frequent pattern tree (FPT) approach modified to generate a minimum set of rules (mFPT), with rule attributes constructed from the interaction features of the yeast genomic data. The mFPT prediction accuracy is benchmarked against other commonly used methods such as Bayesian networks and logistic regressions under various statistical measures. Our study indicates that mFPT outranks other methods in predicting the protein-protein interactions for the database used. We predict a new protein-protein interaction complex whose biological function is related to premRNA splicing and new protein-protein interactions within existing complexes based on the rules generated.
Resumo:
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition -- the classification of handwritten digits.
Resumo:
How can we insure that knowledge embedded in a program is applied effectively? Traditionally the answer to this question has been sought in different problem solving paradigms and in different approaches to encoding and indexing knowledge. Each of these is useful with a certain variety of problem, but they all share a common problem: they become ineffective in the face of a sufficiently large knowledge base. How then can we make it possible for a system to continue to function in the face of a very large number of plausibly useful chunks of knowledge? In response to this question we propose a framework for viewing issues of knowledge indexing and retrieval, a framework that includes what appears to be a useful perspective on the concept of a strategy. We view strategies as a means of controlling invocation in situations where traditional selection mechanisms become ineffective. We examine ways to effect such control, and describe meta-rules, a means of specifying strategies which offers a number of advantages. We consider at some length how and when it is useful to reason about control, and explore the advantages meta-rules offer for doing this.
Resumo:
The rules which epitomise good writing may on occasions be broken, deliberately and with what the writers judge to be good purpose. This can well occur when students or staff set out to engage effectively with their personal and professional development, through personal reflection on and in experiences. They may do this in what has been called “stream of consciousness” writing, which is deliberately compiled in a manner at variance with the general rules for best practice. The rationale for such an unusual decision, namely to engage in what is frankly disorderly writing, is set out briefly in this chapter. Its characteristics are summarised, in implicit contrast with more conventional styles of writing. Examples are included of claims for the effectiveness of this style when used for developmental purposes by students and staff; and reference is made to the publications of some of those who have endorsed this approach.
Resumo:
M. Galea and Q. Shen. Fuzzy rules from ant-inspired computation. Proceedings of the 13th International Conference on Fuzzy Systems, pages 1691-1696, 2004.