943 resultados para Show da Fé
Resumo:
Roughly 90% of the gas-exchange surface is formed by alveolarization of the lungs. To the best of our knowledge, the formation of new alveoli has been followed in rats only by means of morphological description or interpretation of semiquantitative data until now. Therefore, we estimated the number of alveoli in rat lungs between postnatal days 4 and 60 by unambiguously counting the alveolar openings. We observed a bulk formation of new alveoli between days 4 and 21 (17.4 times increase from 0.8 to 14.3 millions) and a second phase of continued alveolarization between days 21 and 60 (1.3 times increase to 19.3 million). The (number weighted) mean volume of the alveoli decreases during the phase of bulk alveolarization from ∼593,000 μm(3) at day 4 to ∼141,000 μm(3) at day 21, but increases again to ∼298,000 μm(3) at day 60. We conclude that the "bulk alveolarization" correlates with the mechanism of classical alveolarization (alveolarization before the microvascular maturation is completed) and that the "continued alveolarization" follows three proposed mechanisms of late alveolarization (alveolarization after microvascular maturation). The biphasic pattern is more evident for the increase in alveolar number than for the formation of new alveolar septa (estimated as the length of the free septal edge). Furthermore, a striking negative correlation between the estimated alveolar size and published data on retention of nanoparticles was detected.
Resumo:
BACKGROUND Conventional chemotherapy in malignant pleural mesothelioma (MPM) has minimal impact on patient survival due to the supposed chemoresistance of cancer stem cells (CSCs). We sought to identify a sub-population of chemoresistant cells by using putative CSC markers, aldehyde dehydrogenase (ALDH) and CD44 in three MPM cell lines; H28, H2052 and Meso4. METHODS The Aldefluor assay was used to measure ALDH activity and sort ALDH(high) and ALDH(low) cells. Drug-resistance was evaluated by cell viability, anchorage-independent sphere formation, flow-cytometry and qRT-PCR analyses. RESULTS The ALDH(high) - and ALDH(low) -sorted fractions were able to demonstrate phenotypic heterogeneity and generate spheres, the latter being less efficient, and both showed an association with CD44. Cis- diamminedichloroplatinum (II) (cisplatin) treatment failed to reduce ALDH activity and conferred only a short-term inhibition of sphere generation in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. Induction of drug sensitivity by an ALDH inhibitor, diethylaminobenzaldehyde (DEAB) resulted in significant reductions in cell viability but not a complete elimination of the sphere-forming cells, suggestive of the presence of a drug-resistant subpopulation. At the transcript level, the cisplatin + DEAB-resistant cells showed upregulated mRNA expression levels for ALDH1A2, ALDH1A3 isozymes and CD44 indicating the involvement of these markers in conferring chemoresistance in both ALDH(high) and ALDH(low) fractions of the three MPM cell lines. CONCLUSIONS Our study shows that ALDH(high) CD44(+) cells are implicated in conveying tolerance to cisplatin in the three MPM cell lines. The combined use of CD44 and ALDH widens the window for identification and targeting of a drug-resistant population which may improve the current treatment modalities in mesothelioma.
Resumo:
CONTEXT Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Resumo:
We investigated the influence of playing a video game on children’s ability to distinguish between fantasy and reality. School-age children played a platform game for 15 min and then performed a fantasy/reality distinction task in which they were to judge whether images (from the platform game and from other games) were fantasy images or reality images. Unlike those in the control group (who played a memory game), the children in the experimental group showed a response bias toward mistakenly classifying reality images from the video game as fantasy images (as determined by means of an analysis based on signal detection theory). We conclude that playing the video game exerted a short-term influence on children’s ability to distinguish between fantasy and reality.
Resumo:
(1) H-MRS is regularly applied to determine lipid content in ectopic tissue - mostly skeletal muscle and liver - to investigate physiological and/or pathologic conditions, e.g. insulin resistance. Technical developments also allow non-invasive in vivo assessment of cardiac lipids; however, basic data about methodological reliability (repeatability) and physiological variations are scarce. The aim of the presented work was to determine potential diurnal changes of cardiac lipid stores in humans, and to put the results in relation to methodological repeatability and normal physiological day-to-day variations. Optimized cardiac- and respiratory-gated (1) H-MRS was used for non-invasive quantification of intracardiomyocellular lipids (ICCL), creatine, trimethyl-ammonium compounds (TMA), and taurine in nine healthy young men at three time points per day on two days separated by one week. This design allowed determination of (a) diurnal changes, (b) physiological variation over one week and (c) methodological repeatability of the ICCL levels. Comparison of fasted morning to post-absorptive evening measurements revealed a significant 37 ± 19% decrease of ICCL during the day (p = 0.0001). There was a significant linear correlation between ICCL levels in the morning and their decrease during the day (p = 0.015). Methodological repeatability for the ICCL/creatine ratio was excellent, with a coefficient of variance of ~5%, whereas physiological variation was found to be considerably higher (22%) in spite of a standardized physiological preparation protocol. In contrast, TMA levels remained stable over this time period. The proposed (1) H-MRS technique provides a robust way to investigate relevant physiological changes in cardiac metabolites, in particular ICCL. The present results suggest that ICCL reveal a diurnal course, with higher levels in the morning as compared to evening. In addition, a considerable long-term variation of ICCL levels, in both the morning and evening, was documented. Given the high methodological repeatability, these effects should be taken into account in studies investigating the metabolic role of ICCL.
Resumo:
BACKGROUND Cell-free foetal haemoglobin (HbF) has been shown to play a role in the pathology of preeclampsia (PE). In the present study, we aimed to further characterize the harmful effects of extracellular free haemoglobin (Hb) on the placenta. In particular, we investigated whether cell-free Hb affects the release of placental syncytiotrophoblast vesicles (STBMs) and their micro-RNA content. METHODS The dual ex-vivo perfusion system was used to perfuse isolated cotyledons from human placenta, with medium alone (control) or supplemented with cell-free Hb. Perfusion medium from the maternal side of the placenta was collected at the end of all perfusion phases. The STBMs were isolated using ultra-centrifugation, at 10,000×g and 150,000×g (referred to as 10K and 150K STBMs). The STBMs were characterized using the nanoparticle tracking analysis, identification of surface markers and transmission electron microscopy. RNA was extracted and nine different micro-RNAs, related to hypoxia, PE and Hb synthesis, were selected for analysis by quantitative PCR. RESULTS All micro-RNAs investigated were present in the STBMs. Mir-517a, mir-141 and mir-517b were down regulated after Hb perfusion in the 10K STBMs. Furthermore, Hb was shown to be carried by the STBMs. CONCLUSION This study showed that Hb perfusion can alter the micro-RNA content of released STBMs. Of particular interest is the alteration of two placenta specific micro-RNAs; mir-517a and mir-517b. We have also seen that STBMs may function as carriers of Hb into the maternal circulation.
Resumo:
The development of topography depends mainly on the interplay between uplift and erosion. These processes are controlled by various factors including climate, glaciers, lithology, seismic activity and short-term variables, such as anthropogenic impact. Many studies in orogens all over the world have shown how these controlling variables may affect the landscape's topography. In particular, it has been hypothesized that lithology exerts a dominant control on erosion rates and landscape morphology. However, clear demonstrations of this influence are rare and difficult to disentangle from the overprint of other signals such as climate or tectonics. In this study we focus on the upper Rhône Basin situated in the Central Swiss Alps in order to explore the relation between topography, possible controlling variables and lithology in particular. The Rhône Basin has been affected by spatially variable uplift, high orographically driven rainfalls and multiple glaciations. Furthermore, lithology and erodibility vary substantially within the basin. Thanks to high-resolution geological, climatic and topographic data, the Rhône Basin is a suitable laboratory to explore these complexities. Elevation, relief, slope and hypsometric data as well as river profile information from digital elevation models are used to characterize the landscape's topography of around 50 tributary basins. Additionally, uplift over different timescales, glacial inheritance, precipitation patterns and erodibility of the underlying bedrock are quantified for each basin. Results show that the chosen topographic and controlling variables vary remarkably between different tributary basins. We investigate the link between observed topographic differences and the possible controlling variables through statistical analyses. Variations of elevation, slope and relief seem to be linked to differences in long-term uplift rate, whereas elevation distributions (hypsometry) and river profile shapes may be related to glacial imprint. This confirms that the landscape of the Rhône Basin has been highly preconditioned by (past) uplift and glaciation. Linear discriminant analyses (LDAs), however, suggest a stronger link between observed topographic variations and differences in erodibility. We therefore conclude that despite evident glacial and tectonic conditioning, a lithologic control is still preserved and measurable in the landscape of the Rhône tributary basins.
Resumo:
In equatorial regions, where tree rings are less distinct or even absent, the response of forests to high-frequency climate variability is poorly understood. We measured stable carbon and oxygen isotopes in anatomically distinct, annual growth rings of four Pericopsis elata trees from a plantation in the Congo Basin, to assess their sensitivity to recorded changes in precipitation over the last 50 y. Our results suggest that oxygen isotopes have high common signal strength (EPS = 0.74), and respond to multi-annual precipitation variability at the regional scale, with low δ18O values (28–29‰) during wetter conditions (1960–1970). Conversely, δ13C are mostly related to growth variation, which in a light-demanding species are driven by competition for light. Differences in δ13C values between fast- and slow-growing trees (c. 2‰), result in low common signal strength (EPS = 0.37) and are driven by micro-site conditions rather than by climate. This study highlights the potential for understanding the causes of growth variation in P. elata as well as past hydroclimatic changes, in a climatically complex region characterized by a bimodal distribution in precipitation.