910 resultados para Set theory.
Resumo:
In this paper we focus on the existence of 2-critical sets in the latin square corresponding to the elementary abelian 2-group of order 2(n). It has been shown by Stinson and van Rees that this latin square contains a 2-critical set of volume 4(n) - 3(n). We provide constructions for 2-critical sets containing 4(n) - 3(n) + 1 - (2(k-1) + 2(m-1) + 2(n-(k+m+1))) entries, where 1 less than or equal to k less than or equal to n and 1 less than or equal to m less than or equal to n - k. That is, we construct 2-critical sets for certain values less than 4(n) - 3(n) + 1 - 3 (.) 2([n /3]-1). The results raise the interesting question of whether, for the given latin square, it is possible to construct 2-critical sets of volume m, where 4(n) - 3(n) + 1 - 3 (.) 2([n/3]-1) < m < 4(n) - 3(n).
Resumo:
We continue our study of partitions of the set of all ((v)(3)) triples chosen from a v-set into pairwise disjoint planes with three points per line. We develop further necessary conditions for the existence of partitions of such sets into copies of PG(2, 2) and copies of AG(2, 3), and deal with the cases v = 13, 14, 15 and 17. These partitions, together with those already known for v = 12, 16 and 18, then become starters for recursive constructions of further infinite families of partitions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A K-t,K-t-design of order n is an edge-disjoint decomposition of K-n into copies of K-t,K-t. When t is odd, an extended metamorphosis of a K-t,K-t-design of order n into a 2t-cycle system of order n is obtained by taking (t - 1)/2 edge-disjoint cycles of length 2t from each K-t,K-t block, and rearranging all the remaining 1-factors in each K-t,K-t block into further 2t-cycles. The 'extended' refers to the fact that as many subgraphs isomorphic to a 2t-cycle as possible are removed from each K-t,K-t block, rather than merely one subgraph. In this paper an extended metamorphosis of a K-t,K-t-design of order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is given for all odd t > 3. A metamorphosis of a 2-fold K-t,K-t-design of any order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is also given, for all odd t > 3. (The case t = 3 appeared in Ars Combin. 64 (2002) 65-80.) When t is even, the graph K-t,K-t is easily seen to contain t/2 edge-disjoint cycles of length 2t, and so the metamorphosis in that case is straightforward. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and (i) - n(j) less than or equal to 1 for any i, j is an element of {1, 2,..., k}, then C is equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in C is equitably k-coloured. For m = 4,5 and 6, we completely settle the existence problem for equitably 3-colourable m-cycle decompositions of complete graphs and complete graphs with the edges of a 1-factor removed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A 4-cycle system of order n, denoted by 4CS(n), exists if and only if nequivalent to1 (mod 8). There are four configurations which can be formed by two 4-cycles in a 4CS(n). Formulas connecting the number of occurrences of each such configuration in a 4CS(n) are given. The number of occurrences of each configuration is determined completely by the number d of occurrences of the configuration D consisting of two 4-cycles sharing a common diagonal. It is shown that for every nequivalent to1 (mod 8) there exists a 4CS(n) which avoids the configuration D, i.e. for which d=0. The exact upper bound for d in a 4CS(n) is also determined.
Resumo:
We extend our earlier work on ways in which defining sets of combinatorial designs can be used to create secret sharing schemes. We give an algorithm for classifying defining sets or designs according to their security properties and summarise the results of this algorithm for many small designs. Finally, we discuss briefly how defining sets can be applied to variations of the basic secret sharing scheme.
Resumo:
The Steiner trade spectrum of a simple graph G is the set of all integers t for which there is a simple graph H whose edges can be partitioned into t copies of G in two entirely different ways. The Steiner trade spectra of complete partite graphs were determined in all but a few cases in a recent paper by Billington and Hoffman (Discrete Math. 250 (2002) 23). In this paper we resolve the remaining cases. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Any partial Steiner triple system of order u can be embedded in a Steiner triple system of order v if v equivalent to 1, 3 (mod 6) and v greater than or equal to 3u - 2. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Let T be a partial latin square and L be a latin square with T subset of L. We say that T is a latin trade if there exists a partial latin square T' with T' boolean AND T = theta such that (LT) U T' is a latin square. A k-homogeneous latin trade is one which intersects each row, each column and each entry either 0 or k times. In this paper, we construct 3-homogeneous latin trades from hexagonal packings of the plane with circles. We show that 3-homogeneous latin trades of size 3 m exist for each m >= 3. This paper discusses existence results for latin trades and provides a glueing construction which is subsequently used to construct all latin trades of finite order greater than three. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.
Resumo:
We apply a three-dimensional approach to describe a new parametrization of the L-operators for the two-dimensional Bazhanov-Stroganov (BS) integrable spin model related to the chiral Potts model. This parametrization is based on the solution of the associated classical discrete integrable system. Using a three-dimensional vertex satisfying a modified tetrahedron equation, we construct an operator which generalizes the BS quantum intertwining matrix S. This operator describes the isospectral deformations of the integrable BS model.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.