922 resultados para Semiconductor quantum dot


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the emission spectra of the semiconductor quantum well for few-cycle and sub-cycle pulse exciting. We find that Fano interference may induce third harmonic enhancement. Third harmonic enhancement varies with the magnitude and duration of the incident pulse, and may be enhanced by approximately one order of magnitude for the low intensity region of the sub-cycle incident pulse exciting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of the transverse relaxation time in optically excited semiconductor quantum wells is investigated based on the vector property of the interband transition matrix elements. The dephasing rate due to carrier-carrier (CC) scattering is found to be equal to half of the common momentum relaxation rate. The analytical expression of the polarization dephasing due to CC scattering in two-dimension is established and the dependence of the dephasing rate Gamma(cc) on the carrier density N is determined to be Gamma(cc) = constant (.) N-1/2, which is used to explain the experimental results and provides a promising physical picture. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: