963 resultados para Semiconductor Laser
Resumo:
Objectives: To evaluate the effect of laser irradiation (LI) on the glycemic state and the histological and ionic parameters of the parotid and submandibular glands in rats with diabetes. Methods: One hundred twenty female rats were divided into eight groups. Diabetes was induced by administration of streptozotocin and confirmed later according to results of glycemia testing. Twenty-nine days after the induction, the parotid and submandibular glands of the rats were irradiated with 5, 10, and 20 J/cm(2) using a laser diode (660nm/100mW) (without diabetes: C5, C10, and C20; with diabetes: D5, D10, and D20, respectively). On the following day, the rats were euthanized, and blood glucose determined. Histological and ionic analyses were performed. Results: Rats with diabetes without irradiation (D0) showed lipid droples accumulation in the parotid gland, but accumulation decreased after 5, 10, and 20 J/cm(2) of laser irradiation. A decrease in fasting glycemia level from 358.97 +/- 56.70 to 278.33 +/- 87.98mg/dL for D5 and from 409.50 +/- 124.41 to 231.80 +/- 120.18 mg/dL for D20 (p < 0.05) was also observed. Conclusion: LI should be explored as an auxiliary therapy for control of complications of diabetes because it can alter the carbohydrate and lipid metabolism of rats with diabetes.
Resumo:
Objective and Background Data: Common side effects of radiotherapy (RT) to the head and neck include oral mucositis, xerostomia, and severe pain. The aim of this study is to report improvement in the quality of life of an oncological patient by laser phototherapy (LPT). Clinical Case and Laser Phototherapy Protocol: The patient, a 15-year-old girl diagnosed with mucoepidermoid carcinoma, underwent surgical excision of a tumor of the left palatomaxilla. After that, she was subjected to 35 sessions of RT (2 Gy/d). Clinical examination revealed the spread of severe ulcerations to the jugal mucosa, gums, lips, hard palate, and tongue (WHO mucositis score 3). She had difficulty in moving her tongue and she was unable to eat any solid food. Oral hygiene orientation and LPT were performed throughout all RT sessions. A continuous diode laser, 660 nm, 40 mW, 6 J/cm(2), 0.24 J per point in contact mode, with spot size of 0.04 cm(2) was used in the entire oral cavity. A high-power diode laser at 1 W, 10 sec per cm of mucositis, approximately 10 J/cm(2), was used in defocused mode only on ulcerative lesions. After the first laser irradiation session, decreases in pain and xerostomia were reported; however, a more significant improvement was seen after five sessions. At that point although the mucositis score was still 2, the patient reported that she was free of pain, and consequently a palatine plate could be made to rehabilitate the entire surgical area. Seventeen laser irradiation sessions were necessary to eliminate all oral mucositis lesions. Conclusion: Normal oral function and consequent improvements in the quality of life of this oncologic patient were observed with LPT.
Resumo:
An in vivo study was conducted to verify the ability of laser fluorescence (LF) to assess the activity status of occlusal caries in primary teeth, using different air-drying times. Occlusal sites (707) were examined using LF (DIAGNOdent) after air-drying for 3 s and 15 s, and the difference between readings (DIF15 s-3 s) was calculated. For concurrent validation of LF, visual criteria-Nyvad (NY) and Lesion Activity Assessment associated with the International Caries Detection and Assessment System (LAA-ICDAS)-were the reference standards for lesion activity. Histological exam using a pH-indicator dye (0.1% methyl red) was performed in 46 exfoliated/extracted teeth for criterion validation. LF readings and DIF15 s-3 s were compared using Kruskall-Wallis and Mann-Whitney tests. Receiver operating characteristic analyses were performed and validity parameters calculated, considering the caries activity assessment. Using NY, active lesions (3 s: 30.0 +/- 29.3; 15 s: 34.2 +/- 30.6) presented higher LF readings than inactive lesions (3 s: 17.0 +/- 16.3; 15 s: 19.2 +/- 17.3; p <0.05), different from LAA-ICDAS. Active cavitated caries resulted in higher LF readings (3 s: 50.3 +/- 3.5; 15 s: 54.7 +/- 30.2) than inactive cavitated caries (3 s: 19.9 +/- 16.3; 15 s: 22.8 +/- 16.8). Therefore, LF can distinguish cavitated active and inactive lesions classified by NY, but not by LAA-ICDAS; however, this difference might be related to the visual system rather than to LF. The air-drying time could be an alternative to improve the caries activity assessment; however, longer air-drying time is suggested to be tested subsequently. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3463007]
Resumo:
Objective: This in vitro study aimed to analyze the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and sodium fluoride (NaF) varnishes and solutions to protect enamel against erosion. Background data: The effect of Nd:YAG laser irradiation on NaF and AmF was analyzed; however, there is no available data on the interaction between Nd:YAG laser irradiation and TiF(4). Methods: Bovine enamel specimens were pre-treated with NaF varnish, TiF(4) varnish, NaF solution, TiF(4) solution, placebo varnish, Nd:YAG (84.9 J/cm(2)), Nd:YAG prior to or through NaF varnish, Nd:YAG prior to or through TiF(4) varnish, Nd:YAG prior to or through NaF solution, Nd:YAG prior to or through TiF(4) solution, and Nd:YAG prior to or through placebo varnish. Controls remained untreated. Ten specimens in each group were then subjected to an erosive demineralization (Sprite Zero, 4x90 s/day) and remineralization (artificial saliva, between the erosive cycles) cycling for 5 days. Enamel loss was measured profilometrically (mu m). Additionally, treated but non-eroded specimens were additionally analyzed by scanning electron microscope (SEM) (each group n-2). The data were statistically analyzed by ANOVA and Tukey's post-hoc test (p < 0.05). Results: Only TiF(4) varnish (1.8 +/- 0.6 mu m), laser prior to TiF(4) varnish (1.7 +/- 0.3 mu m) and laser prior to TiF(4) solution (1.4 +/- 0.3 mu m) significantly reduced enamel erosion compared to the control (4.1 +/- 0.6 mu m). SEM pictures showed that specimens treated with TiF(4) varnish presented a surface coating. Conclusions: Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.
Resumo:
Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm(2)), infrared laser (780 nm, 40 mW, 1 W/cm(2)), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm(2)). All applications were punctual and performed with a spot with 0.4 mm(2) of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602850]
Resumo:
Objective: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. Methods: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). Results: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. Conclusion: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion.
Resumo:
Objective: This study investigated and correlated the kinetic expression of vascular endothelial growth factor (VEGF)-A(165) messenger ribonucleic acid (mRNA) with the associated use or not of an infrared laser and a visible red laser during the wound healing in rats. Background Data: There is a lack of scientific evidence demonstrating the influence of low-level laser therapy (LLLT) on the expression of VEGF mRNA in vivo. Materials and Methods: Forty-five Wistar rats were randomly allocated to one of three groups: I (n = 5, nonoperated animals), II (n = 25, operated animals), and III (n = 25, animals operated and subjected to laser irradiation). A surgical wound was performed using a scalpel in the right side of the tongue of operated animals. In group III, two sessions of laser irradiation were performed, one right after the surgical procedure (infrared laser, 780 nm, 70mW, 35 J/cm(2)) and the other 48 h later (visible red laser, 660 nm, 40mW, 5J/cm(2)). Five animals each were sacrificed 1, 3, 5, and 7 days postoperatively in groups II and III, and samples of tongue tissue were obtained. The animals of group I were sacrificed on day 7. Total RNA was extracted using guanidine-isothiocyanate-phenol-chloroform method. The results of horizontal electrophoresis after reverse transcription polymerase chain reaction permitted the ratio of VEGF-A(165) mRNA and glyceraldehyde 3-phosphate dehydrogenase mRNA expression for groups I, II, and III to be assessed (two-way analysis of variance and Tukey test, p<0.05). Results: The expression of VEGF-A(165) mRNA in group II (0.770 +/- 0.098) was statistically greater than that observed in groups I (0.523 +/- 0.164) and III (0.504 +/- 0.069) in the first day after surgery (p<0.05). Significant differences between the groups were not observed in other time periods. Conclusion: LLLT influenced the expression of VEGF-A(165) mRNA during wound healing after a surgical procedure on the tongue of Wistar rats.
Resumo:
Objective: Previous investigations have demonstrated improved enamel demineralization resistance after laser irradiation. Due to the possibility of a synergistic effect between laser and fluoride, this study investigated the effect of fluoridated agents and Nd:YAG irradiation separately and in combination on enamel resistance to erosion. Methods: One hundred bovine enamel blocks were randomly divided into 10 groups: G1, untreated (control); G2, acidic phosphate fluoride (APF) (1.23% F) for 4 min; G3, fluoride varnish for 6 h (NaF, 2.26%); G4, 0.5 W Nd: YAG laser (250 mm pulse width, 10 Hz, 35 J/cm(2), with uniform velocity for 30 sec in each application); G5, 0.75 W Nd:YAG laser (52.5 J/cm(2)); G6, 1.0 W Nd:YAG laser (70 J/cm(2)); G7, APF + 0.75 W Nd:YAG laser; G8, 0.75 W Nd:YAG laser + APF; G9, fluoride varnish + 0.75 W Nd:YAG laser; and G10, 0.75 W Nd:YAG laser + fluoride varnish. During 10 d the erosive cycle was conducted by immersion of the blocks in Sprite light for 1 min, followed by immersion in artificial saliva for 59 min. This procedure was consecutively repeated four times per day. In each day, during the remaining 20 h, the blocks were maintained in artificial saliva. The wear was evaluated by profilometry (days 5 and 10). Data were tested by two-way ANOVA and Bonferroni's tests (p < 0.05). Results: The mean wear at days 5 and 10 was, respectively: G1, 1.83 and 2.67 mu m; G2, 1.04 and 2.60 mu m; G3, 1.03 and 2.48 mu m; G4, 1.13 and 2.47 mu m; G5, 1.07 and 2.44 mu m; G6, 1.0 and 2.35 mu m; G7, 0.75 and 2.27 mu m; G8, 0.80 and 2.12 mu m; G9, 0.76 and 2.47 mu m; and G10, 1.09 and 2.46 mu m. At day 5, all the experimental groups presented significant lesser wear when compared to control group. However, at 10 d, only G7 and G8 were still different from control. Conclusions: The association between APF application and laser irradiation seems to be an alternative preventive measure against dental erosion.
Resumo:
Objectives: This study evaluates the action of a low-intensity diode laser with gallium-aluminum-arsenide (GaAlAs) active medium on the healing process and analgesia in individuals undergoing free gingival grafts. Material and Method: Ten individuals needing bilateral gingival graft in the mandibular arch were enrolled in a double-blind study. Each individual had a 30-d interval between the two surgeries. The side receiving application of laser was defined as test side and was established upon surgery; laser application was simulated on the control side. The laser was applied in the immediate postoperative period and after 48 h, and patients rated pain on a scale of 0 to 10, representing minimal and maximal pain, respectively. Photographs were obtained at 7, 15, 30, and 60d postoperatively and evaluated by five periodontists. Results: No statistically significant difference was found at any postoperative period between control and test sides, even though greater clinical improvement associated with treatment was observed at 15d postoperative. At 30 and 60d, some examiners observed the same or greater clinical improvement for the control. Only one individual reported mild to moderate pain on the first postoperative day. Conclusions: Low-intensity laser therapy did not improve the healing of gingival grafts and did not influence analgesia.
Resumo:
Objective: This study evaluated with histochemical analysis how the number of laser applications can affect the masseter muscle. Background: In dentistry today, the laser is used in patients with temporomandibular disorders (TMDs), mainly for radiating pain in the masticatory muscles, whose origins may be associated with malocclusion, although the laser effects are not well understood on the cellular level. Materials and Methods: Thirty mice (HRS/J lineage) were randomly distributed into groups according to the number of laser applications (three, six, and 10). For each group of laser applications (experimental, n = 5), it was considered the control group (n = 5), which was not irradiated. All animals inhaled halothane (2-bromo-2-chloro-1, 1, 1-trifluoroethane, minimum 99%, Sigma Aldrich, India) before each laser irradiation performed on the left masseter muscle region, on alternate days with 20 J/cm(2), 40mW, for 20 sec. The muscle samples were collected for histochemical analysis with succinate dehydrogenase (SDH) enzyme 72 h after the last application. Results: (a) A decrease in area of light fibers type (35.91% +/- 6.9%; 32.08% +/- 6.3%, and 27.88% +/- 6.3%), according to the increase of laser applications (p < 0.05); (b) significant increase (p < 0.05) in the area of intermediate fibers, with an increase of laser application (11.08% +/- 3.9%; 16.52% +/- 5.7%, and 15.96% +/- 3.9%), although the increase with 10 applications was small; (c) area increase of dark fibers in the group with three laser applications (0.16% +/- 0.3%) (p < 0.05), and in groups with six and 10 laser applications, respectively (9.68% +/- 6.0% and 9.60% +/- 4.0%). Conclusions: The SDH enzyme activity revealed that the number of laser applications increases the metabolic pattern of the muscle fibers. A minimal difference in metabolic activity between six and 10 applications of a laser suggests that further analyses should be done to confirm that six applications are enough to produce the same clinical effects, thereby contributing data to professionals from different fields in regard to the cost-benefit ratio of this therapy.
Resumo:
Objective: This study evaluated ultra-structural dentine changes at the apical stop after CO(2) laser irradiation used during biomechanical preparation. Background: Most studies evaluating the sealing efficiency of CO(2) lasers have been carried out after apical root canal resections and retro-filling procedures. Methods: Sixty human canines were prepared with #1 to #6 Largo burs. The apical stops were established at 1 mm (n = 30) and 2 mm (n = 30) from the apex. Final irrigation was performed with 1% NaOCl and 15% EDTA followed by 20 ml of distilled and deionized water. Specimens were subdivided into three subgroups (n = 10 for each stop distance): GI-no radiation (n = 20); GII-3W potency (n = 20), GIII-5W potency (n = 20). After preparation, specimens were evaluated by scanning electron microscopy, with ultra-structural changes classified according to a scoring system based on six qualitatively different outcomes. Results: Statistical analysis using the Mann-Whitney test confirmed more intense results for the specimens irradiated at 5 W potency than at 3 W (p<0.0001). The Kruskal-Wallis test indicated that when using the same potencies (3 or 5 W) at 1 and 2 mm from the apex, there were no statistically significant differences in ultra-structural changes. Conclusions: Our results showed that ultra-structural changes ranged from smear layer removal to dentine fusion. As laser potency was increased from 3 to 5 W, ultra-structural changes included extensive fused lava-like areas sealing the apical foramen.
Resumo:
Objective: In this study we evaluated the ablation rate of superficial and deep dentin irradiated with different Er:YAG laser energy levels, and observed the micromorphological aspects of the lased substrates with a scanning electron microscope (SEM). Background Data: Little is known about the effect of Er: YAG laser irradiation on different dentin depths. Materials and Methods: Sixty molar crowns were bisected, providing 120 specimens, which were randomly assigned into two groups ( superficial or deep dentin), and later into five subgroups (160, 200, 260, 300, or 360 mJ). Initial masses of the specimens were obtained. After laser irradiation, the final masses were obtained and mass losses were calculated followed by the preparation of specimens for SEM examination. Mass-loss values were subjected to two-way ANOVA and Fisher's least significant difference multiple-comparison tests (p < 0.05). Results: There was no difference between superficial and deep dentin. A significant and gradual increase in the mass-loss values was reached when energies were raised, regardless of the dentin depth. The energy level of 360 mJ showed the highest values and was statistically significantly different from the other energy levels. The SEM images showed that deep dentin was more selectively ablated, especially intertubular dentin, promoting tubule protrusion. At 360 mJ the micromorphological features were similar for both dentin depths. Conclusion: The ablation rate did not depend on the depth of the dentin, and an energy level lower than 360 mJ is recommended to ablate both superficial and deep dentin effectively without causing tissue damage.
Resumo:
Objective: The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Materials and Methods: Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er: YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Results: Temperature rise during composite resin removal with the Er: YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Conclusion: Under the tested conditions, Er: YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.
Resumo:
Objective: The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. Background Data: There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Materials and Methods: Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Results: Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). Conclusion: When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.
Resumo:
Objectives: To describe the microscopic pulpal reactions resulting from orthodontically induced tooth movement associated with low-level laser therapy (LLLT) in rats. Materials and Methods: Forty-five young male Wistar rats were randomly assigned to three groups. In group I (n = 20), the maxillary right first molars were submitted to orthodontic movement with placement of a coil spring. In group II (n = 20), the teeth were submitted to orthodontic movement plus LLLT at 4 seconds per point (buccal, palatal, and mesial) with a GaAlAs diode laser source (830 nm, 100 mW, 18 J/cm(2)). Group III (n = 5) served as a control (no orthodontic movement or LLLT). Groups I and 11 were divided into four subgroups according to the time elapsed between the start of tooth movement and sacrifice (12 hours, 24 hours, 3 days, and 7 days). Results: Up until the 3-day period, the specimens in group I presented a thicker odontoblastic layer, no cell-free zone of Weil, pulp core with differentiated mesenchymal and defense cells, and a high concentration of blood vessels. In group II, at the 12- and 24-hour time points, the odontoblastic layer was disorganized and the cell-free zone of Weil was absent, presenting undifferentiated cells, intensive vascularization with congested capillaries, and scarce defense cells in the cell-rich zone. In groups I and II, pulpal responses to the stimuli were more intense in the area underneath the region of application of the force or force/laser. Conclusions: The orthodontic-induced tooth movement and LLLT association showed reversible hyperemia as a tissue response to the stimulus. LLLT leads to a faster repair of the pulpal tissue due to orthodontic movement. (Angle Orthod. 2010;80:116-122.)