964 resultados para Semi-parametric estimation
Resumo:
This paper describes the first use of inter-particle force measurement in reworked aerosols to better understand the mechanics of dust deflation and its consequent ecological ramifications. Dust is likely to carry hydrocarbons and micro-organisms including human pathogens and cultured microbes and thereby is a threat to plants, animals and human. Present-day global aerosol emissions are substantially greater than in 1850; however, the projected influx rates are highly disputable. This uncertainty, in part, has roots in the lack of understanding of deflation mechanisms. A growing body of literature shows that whether carbon emission continues to increase, plant transpiration drops and soil water retention enhances, allowing more greenery to grow and less dust to flux. On the other hand, a small but important body of geochemistry literature shows that increasing emission and global temperature leads to extreme climates, decalcification of surface soils containing soluble carbonate polymorphs and hence a greater chance of deflation. The consistency of loosely packed reworked silt provides background data against which the resistance of dust’s bonding components (carbonates and water) can be compared. The use of macro-scale phenomenological approaches to measure dust consistency is trivial. Instead, consistency can be measured in terms of inter-particle stress state. This paper describes a semi-empirical parametrisation of the inter-particle cohesion forces in terms of the balance of contact-level forces at the instant of particle motion. We put forward the hypothesis that the loss of Ca2+-based pedogenic salts is responsible for much of the dust influx and surficial drying pays a less significant role.
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.
Resumo:
Das Mahafaly Plateau im südwestlichen Madagaskar ist gekennzeichnet durch raue klimatische Bedingungen, vor allem regelmäßige Dürren und Trockenperioden, geringe Infrastruktur, steigende Unsicherheit, hohe Analphabetenrate und regelmäßige Zerstörung der Ernte durch Heuschreckenplagen. Da 97% der Bevölkerung von der Landwirtschaft abhängen, ist eine Steigerung der Produktivität von Anbausystemen die Grundlage für eine Verbesserung der Lebensbedingungen und Ernährungssicherheit in der Mahafaly Region. Da wenig über die Produktivität von traditionellen extensiven und neu eingeführten Anbaumethoden in diesem Gebiet bekannt ist, waren die Zielsetzungen der vorliegenden Arbeit, die limitierenden Faktoren und vielversprechende alternative Anbaumethoden zu identifizieren und diese unter Feldbedingungen zu testen. Wir untersuchten die Auswirkungen von lokalem Viehmist und Holzkohle auf die Erträge von Maniok, der Hauptanbaufrucht der Region, sowie die Beiträge von weiteren Faktoren, die im Untersuchungsgebiet ertragslimitierend sind. Darüber hinaus wurde in der Küstenregion das Potenzial für bewässerten Gemüseanbau mit Mist und Holzkohle untersucht, um zu einer Diversifizierung von Einkommen und Ernährung beizutragen. Ein weiterer Schwerpunkt dieser Arbeit war die Schätzung von Taubildung und deren Beitrag in der Jahreswasserbilanz durch Testen eines neu entworfenen Taumessgerätes. Maniok wurde über drei Jahre und in drei Versuchsfeldern in zwei Dörfern auf dem Plateau angebaut, mit applizierten Zeburindermistraten von 5 und 10 t ha-1, Holzkohleraten von 0,5 und 2 t ha-1 und Maniokpflanzdichten von 4500 Pflanzen ha-1. Maniokknollenerträge auf Kontrollflächen erreichten 1 bis 1,8 t Trockenmasse (TM) ha-1. Mist führte zu einer Knollenertragssteigerung um 30 - 40% nach drei Jahren in einem kontinuierlich bewirtschafteten Feld mit geringer Bodenfruchtbarkeit, hatte aber keinen Effekt auf den anderen Versuchsfeldern. Holzkohle hatte keinen Einfluss auf Erträge über den gesamten Testzeitraum, während die Infektion mit Cassava-Mosaikvirus zu Ertragseinbußen um bis zu 30% führte. Pflanzenbestände wurden felder-und jahresübergreifend um 4-54% des vollen Bestandes reduziert, was vermutlich auf das Auftreten von Trockenperioden und geringe Vitalität von Pflanzmaterial zurückzuführen ist. Karotten (Daucus carota L. var. Nantaise) und Zwiebeln (Allium cepa L. var. Red Créole) wurden über zwei Trockenzeiten mit lokal erhältlichem Saatgut angebaut. Wir testeten die Auswirkungen von lokalem Rindermist mit einer Rate von 40 t ha-1, Holzkohle mit einer Rate von 10 t ha-1, sowie Beschattung auf die Gemüseernteerträge. Lokale Bewässerungswasser hatte einen Salzgehalt von 7,65 mS cm-1. Karotten- und Zwiebelerträge über Behandlungen und Jahre erreichten 0,24 bis 2,56 t TM ha-1 beziehungsweise 0,30 bis 4,07 DM t ha-1. Mist und Holzkohle hatten keinen Einfluss auf die Erträge beider Kulturen. Beschattung verringerte Karottenerträge um 33% im ersten Jahr, während sich die Erträge im zweiten Jahr um 65% erhöhten. Zwiebelerträge wurden unter Beschattung um 148% und 208% im ersten und zweiten Jahr erhöht. Salines Bewässerungswasser sowie Qualität des lokal verfügbaren Saatgutes reduzierten die Keimungsraten deutlich. Taubildung im Küstendorf Efoetsy betrug 58,4 mm und repräsentierte damit 19% der Niederschlagsmenge innerhalb des gesamten Beobachtungszeitraum von 18 Monaten. Dies weist darauf hin, dass Tau in der Tat einen wichtigen Beitrag zur jährlichen Wasserbilanz darstellt. Tageshöchstwerte erreichten 0,48 mm. Die getestete Tauwaage-Vorrichtung war in der Lage, die nächtliche Taubildung auf der metallischen Kondensationsplatte zuverlässig zu bestimmen. Im abschließenden Kapitel werden die limitierenden Faktoren für eine nachhaltige Intensivierung der Landwirtschaft in der Untersuchungsregion diskutiert.
Resumo:
We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.
Resumo:
We analyze the effect of a parametric reform of the fully-funded pension regime in Colombia on the intensive margin of the labor supply. We take advantage of a threshold defined by law in order to identify the causal effect using a regression discontinuity design. We find that a pension system that increases retirement age and the minimum weeks during which workers must contribute to claim pension benefits causes an increase of around 2 hours on the number of weekly worked hours; this corresponds to 4% of the average number of weekly worked hours or around 14% of a standard deviation of weekly worked hours. The effect is robust to different specifications, polynomial orders and sample sizes.
Resumo:
We document the existence of a Crime Kuznets Curve in US states since the 1970s. As income levels have risen, crime has followed an inverted U-shaped pattern, first increasing and then dropping. The Crime Kuznets Curve is not explained by income inequality. In fact, we show that during the sample period inequality has risen monotonically with income, ruling out the traditional Kuznets Curve. Our finding is robust to adding a large set of controls that are used in the literature to explain the incidence of crime, as well as to controlling for state and year fixed effects. The Curve is also revealed in nonparametric specifications. The Crime Kuznets Curve exists for property crime and for some categories of violent crime.
An empirical study of process-related attributes in segmented software cost-estimation relationships
Resumo:
Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions significantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
Resumo:
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.
Resumo:
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.
Resumo:
We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step. The key difference is that we do not impose any parametric restriction on the nuisance functions that are estimated in a first stage, but retain a fully nonparametric model instead. We call these estimators semiparametric doubly robust estimators (SDREs), and show that they possess superior theoretical and practical properties compared to generic semiparametric two-step estimators. In particular, our estimators have substantially smaller first-order bias, allow for a wider range of nonparametric first-stage estimates, rate-optimal choices of smoothing parameters and data-driven estimates thereof, and their stochastic behavior can be well-approximated by classical first-order asymptotics. SDREs exist for a wide range of parameters of interest, particularly in semiparametric missing data and causal inference models. We illustrate our method with a simulation exercise.